ASME B31.3 PROCESS PIPING WORKSHOP SUPPLEMENT		Page 1
		Rev. 3/10/06
CONTENTS		
PIPING SYSTEM STANDARDS	2	
HISTORY OF B31.3	4	
CODE ORGANIZATION	5	
FLUID SERVICE CONTAINMENT SYSTEM CHARACTERISTICS	6	
FLUID SERVICE WORKSHOP	7	
PIPE AND FITTING SELECTION WORKSHOP	7	
PIPING COMPONENT STANDARDS	8	
FLANGE PRESSURE-TEMPERATURE RATINGS	12	
PIPE MANUFACTURING PROCESSES	16	
BRANCH CONNECTIONS	19	
CHARACTERISTICS OF SELECTED GASKET TYPES	19	
CHARACTERISTICS OF SELECTED BOLTING	19	
REQUIREMENTS FOR TOUGHNESS TESTS	20	
DESIGN PRESSURE AND TEMPERATURE WORKSHOP	24	
APPENDIX A – ALLOWABLE STRESSES AND QUALITY FACTORS	25	
CALCULATING REQUIRED PIPE WALL THICKNESS FOR STRAIGHT PIPE	31	
PIPE DIMENSIONS AND PROPERTIES	34	
PIPING MATERIAL SPECIFICATION WORKSHOP	39	
THERMAL EXPANSION COEFFICIENTS	41	
SPRING HANGER LOAD TABLE	45	
GUIDED CANTILEVER METHOD	48	
EXPANSION JOINT PRESSURE THRUST WORKSHOP	52	
TYPES OF EXAMINATION	53	
WELD ACCEPTANCE CRITERIA	54	

ASME B31 Piping System Standards

No.	Title	Typical Coverage
B31.1	Power Piping	piping typically found in electric power generating stations, in industrial and institutional plants, geothermal heating systems, and central and district heating and cooling systems
B31.3	Process Piping	piping typically found in petroleum refineries, chemical, textile, paper, semiconductor and cryogenic plants, and related processing plants and terminals
B31.4	Liquid transportation Piping	piping transporting products which are predominately liquid between plants and terminals and within terminals, pumping, regulating and metering stations
B31.5	Refrigeration Piping	piping for refrigerants and secondary coolants
B31.8	Gas Transportation and Distribution Piping	piping transporting products which are predominately gas between sources and terminals, including compressor, regulating, and metering stations; gas gathering pipelines
B31. 9	Building Services Piping	piping typically found in industrial, institutional, commercial, and public buildings, and in multi-unit residences which does not require the range of sizes, pressures, and temperatures covered in B31.1
B31.11	Slurry Transportation Piping	piping transporting aqueous slurries between plants and terminals and within terminals, pumping and regulating stations
BPE-1	Bioprocessing Equipment	piping and equipment for bioprocess applications, including requirements for sterility and cleanability, surface finish, material joining and seals
PVHO-1	Pressure Vessels for Human Occupancy	piping in pressure vessels occupied by humans such as submersibles, diving bells, decompression chambers, and hyperbaric chambers, in addition to the requirements for the PVHO
HPS	High Pressure Systems	piping system requirements for high pressure systems not covered in B31.3 and equipment requirements not covered the ASME B&PV Code
B&PV Code Section III	Nuclear Power Plants	NB-3600 – Class 1 Piping NC/ND-3600 – Class 2/3 Piping (similar to B31.1) Code Case N47 – Class 1 components in elevated temperature service

National Fire Protection Association (NFPA) Piping System Standards (selected)

No.	Title
13	Installation of Sprinkler Systems
14	Installation of Standpipe, Private Hydrant, and Hose Systems
15	Water Spray Fixed Systems for Fire Protection
16	Installation of Foam-Water Sprinkler and Foam-Water Spray Systems
24	Installation of Private Fire Service Mains and Their Appurtenances
54	National Fuel Gas Code
58	Liquefied Petroleum Gas Code
59A	Production, Storage, and Handling of Liquefied Natural Gas (LNG)

Canadian Standards Association

No.	Title
Z662	Oil and Gas Pipeline Systems

Compressed Gas Association (CGA) Piping System Standards (selected)

No.	Title
G2.1	Requirements for the Storage and Handling of Anhydrous Ammonia (ANSI K61.1)
G4.4	Industrial Practices for Gaseous Oxygen Transmission and Distribution Piping Systems
G5.4	Standard for Hydrogen Piping Systems at Consumer Locations

Chlorine Institute Piping System Standards (selected)

No.	Title
006	Piping Systems for Dry Chlorine
060	Chlorine Pipelines
094	Sodium Hydroxide Solution and Potassium Hydroxide Solution (Caustic): Storage Equipment and Piping Systems
163	Hydrochloric Acid Storage and Piping Systems

HISTORY OF B31.3

In 1926 the American Standards Institute initiated Project B31 to develop a piping code. ASME was the sole administrative sponsor. The fIrst publication of this document, American Tentative Standard code for Pressure Piping, occurred in 1935. From 1942 through 1955, the code was published as the American Standard Code for Pressure Piping, ASA B31.1. It was composed of separate sections for different industries.

These sections were split off, starting in 1955 with the Gas Transmission and Distribution Piping Systems, ASA B31.8. ASA B31.3, Petroleum Refinery Piping Code Section was first published in 1959. A number of separate sections have been prepared, most of which have been published. The various section designations follow.

B31.1 Power Piping
B31.2 Fuel Gas Piping (withdrawn in 1988)
B31.3 Process Piping
B31.4 Liquid Transportation Systems for Hydrocarbons, Liquid Petroleum Gas, Anhydrous Ammonia, and Alcohols
B31.5 Refrigeration Piping
B31.6 Chemical Plant Piping (never published)
B31.7 Nuclear Piping (moved to B&PV Code Section III)
B31.8 Gas Transmission and Distribution Piping Systems
B31.9 Building Services Piping
B31.10 Cryogenic Piping (never published)
B31.11 Slurry Piping
B31.12 Hydrogen Piping (project started in 2004)

A draft of the section for Chemical Plant Piping, B31.6, was completed in 1974. However, it was decided to merge this section into B31.3 because the two code sections were closely related. A joint code section, Chemical Plant and Petroleum Refinery Piping, was published in 1976. It was at this time that items such as fluid service categories such as Category M, nonmetallic piping, and safeguarding were introduced into B31.3.

In 1980 the nonmetals portions of the B31.3 Code were gathered and combined into one chapter, Chapter VII.

A draft code for Cryogenic Piping had been prepared by Section Committee B31.10 and was ready for approval in 1981. Again, since the coverage overlapped with B31.3, it was decided to merge the Section Committees and develop a single inclusive Code. This Code was issued in 1984.

In addition, in 1984 another potentially separate code was added as new chapter to B31.3, High Pressure Piping, Chapter IX.

The resulting document is a Code that is very broad in scope. It covers fluids as benign as water and as hazardous as mustard gas. It covers temperatures from cryogenic conditions to I500°F and beyond. It covers pressures from vacuum and atmospheric to 50,000 psi and higher. Part of the philosophy of the Code stems from this broad coverage. There is a great deal of responsibility placed with the Owner and latitude to use good engineering.

With respect to the initials that appear in front of B31.3, these have been ASA, ANSI and ASME. It is currently correct to refer to the Code as ASME B31.3. The initial designation ASA referred to the American Standards Association. This became the United States of America Standards Institute and then the American National Standards Institute between 1967 and 1969. Thus, ASA was changed to ANSI. In 1978, the Standards Committee was reorganized as a committee operating under ASME procedures with ANSI accreditation. Therefore, the initials ASME now appear in front of B31.3. These changes in acronyms have not changed the B31.3 committee structure or the Code.

CODE ORGANIZATION

Chapter I	Scope and Definitions
Chapter II Part 1 Part 2 Part 3 Part 4 Part 5 Part 6	Design Conditions and Criteria Pressure Design of Piping Components Fluid Service Requirements for Piping Components Fluid Service Requirements for Piping Joints Flexibility and Support Systems
Chapter III	Materials
Chapter IV	Standards and Piping Components
Chapter V	Fabrication, Assembly, and Erection
Chapter VI	Inspection, Examination and Testing
Chapter VII	Nonmetallic Piping and Piping Lined with Nonmetals
Chapter VIII	Piping for Category M Fluid Service
Chapter IX	High Pressure Piping
Appendices A B C D E F G H J K L M Q V X Z	Allowable Stresses and Quality Factors for Metallic Piping and Bolting Materials Stress Tables and Allowable Pressure Tables for Nonmetals Physical Properties of Piping Materials Flexibility and Stress Intensification Factors Reference Standards Precautionary Considerations Safeguarding Sample Calculations for Branch Reinforcement Nomenclature Allowable Stress for High Pressure Piping Aluminum Alloy Pipe Flanges Guide to Classifying Fluid Services Quality System Program Allowable Variations in Elevated Temperature Service Metallic Bellows Expansion Joints Preparation of Technical Inquiries

B31.3 Fluid Service	B31.3 Definition	Containment System Characteristics
Category D [Utility]	 Category D fluid Service: a fluid service in which all of the following apply: 1) the fluid handled is nonflammable, nontoxic, and not damaging to human tissues 2) the design gage pressure does not exceed 1035 kPa (150 psi), and 3) the design temperature is from -29°C (-20°F) to 186°C (366°F). 	Lowest cost Usually not fire resistant Usually not blow-out resistant
Normal [Process]	<i>Normal Fluid Service:</i> a fluid service pertaining to most piping covered by this Code, i.e., not subject to the rules of Category D, Category M or High Pressure Fluid Service.	Moderate cost May be fire resistant or not May be blow-out resistant or not
High Pressure	<i>High Pressure Fluid Service:</i> a fluid service for which the owner specifies the use of Chapter IX for piping design and construction.	High cost Usually fire resistant Usually blow-out resistant
Category M [Lethal]	Category M Fluid Service: a fluid service in which the potential for personnel exposure is judged to be significant and in which a single exposure to a very small quantity of a toxic fluid, caused by leakage, can produce serious irreversible harm to persons on breathing or bodily contact, even when prompt restorative measures are taken.	High cost Usually fire resistant Usually blow-out resistant

ASME B31.3 FLUID SERVICE CONTAINMENT SYSTEM CHARACTERISTICS

Page 7 Rev. 3/10/06

ASME B31.3 FLUID SERVICE WORKSHOP For the fluid services described, what B31.3 fluid services definition is most nearly applicable?	PIPE AND FITTING SELECTION WORKSHOP For the fluid services described, what piping system attributes and components would you select?					
Fluid Service	B31.3 Fluid Service	Fire Resistant?	Blow-out Resistant?	Material of Construction	Pressure Class	Thd, SW or BW NPS < 2?
Steam condensate piping NPS ½ - 8. Downstream of an atmospheric flash tank, so maximum temperature is 212°F (100°C). Maximum pressure is 90 psig (6 bar).						
Dry chlorine liquid, NPS ³ / ₄ - 4. Chlorine rail car to vaporizer. Relief pressure is 710 psig (49 bar) and temperatures range from -29°F to 140°F (-34°C to 60°C). Some studies indicate that there may be some human fatalities resulting from a 30-min exposure to 50 ppm and higher concentrations.						
<u>96% sulfuric acid</u> , NPS ³ / ₄ - 4. Type 316 stainless steel is required for line velocities greater than 3 ft/sec (1 m/sec), otherwise carbon steel is acceptable. Fluoropolymer lined steel is acceptable. Temperature is ambient, maximum pressure is 120 psig (8 bar).						
Gasoline, NPS ½ - 8. Temperature is ambient, max. pressure is 60 psig (4 bar).						
650 psig (45 bar) steam superheated to 735°F (390°C), NPS ¾ - 16. Relief pressure is 725 psig (50 bar).						
Therminol 66 heat transfer oil, NPS ³ / ₄ - 6. Max. temperature is 560°F (295°C), max. pressure is 120 psig (8 bar).						
Styrene monomer, NPS ³ / ₄ - 12. Ambient temperature, max. pressure is 105 psig (7 bar). Flammable. Polymerizes when left stagnant at ambient temperature for long periods of time.						
Lime/water slurry, NPS ¾ to 4. Ambient temperature, maximum pressure is 140 psig (9.5 bar).						

ASME B16 Piping Component Standards

No.	Title
B16.1	Cast Iron Pipe Flanges and Flanged Fittings
B16.3	Malleable Iron Threaded Fittings
B16.4	Gray Iron Threaded Fittings
B16.5	Pipe Flanges and Flanged Fittings
B16.9	Factory-Made Wrought Steel Buttwelding Fittings
B16.10	Face-to-Face and End-to-End Dimensions of Valves
B16.11	Forged Fittings, Socket Welding and Threaded
B16.12	Cast Iron Threaded Drainage Fittings
B16.14	Ferrous Pipe Plugs, Bushings and Locknuts with Pipe Threads
B16.15	Cast Bronze Threaded Fittings
B16.18	Cast Copper Alloy Solder Joint Pressure Fittings
B16.20	Metallic Gaskets for Pipe Flanges – Ring Joint, Spiral Wound and Jacketed
B16.21	Nonmetallic Flat Gaskets for Pipe Flanges
B16.22	Wrought Copper and Copper Alloy Solder Joint Pressure Fittings
*B16.23	Cast Copper Alloy Solder Joint Drainage Fittings – DWV
B16.24	Cast Copper Alloy Pipe Flanges and Flanged Fittings
B16.25	Buttwelding Ends
B16.26	Cast Copper Alloy fittings for Flared Copper Tube
*B16.29	Wrought Copper and Wrought Copper Alloy Solder Joint Drainage Fittings – DWV
*B16.32	Cast Copper Alloy Solder Joint Fittings for Sovent Drainage Systems
*B16.33	Manually Operated Metallic Gas Valves or Use in Gas Piping Systems up to 125 psig
B16.34	Valves – Flanged, Threaded and Welding End
B16.36	Orifice Flanges
*B16.38	Large Metallic Valves for Gas Distribution
B16.39	Malleable Iron Threaded Pipe Unions
*B16.40	Manually Operated Thermoplastic Gas Shutoffs and Valves in Gas Distribution
*B16.41	Functional Qualification Requirement for Power Operated Active Valve Assemblies for Nuclear Power Plants
B16.42	Ductile Iron Pipe Flanges and Flanged Fittings
*B16.44	Manually Operated Metallic Gas Valves for Use in House Piping Systems
*B16.45	Cast Iron Fittings for Sovent Drainage Systems
B16.47	Large Diameter Steel Flanges
B16.48	Steel Line Blanks
*B16.49	Factory-Made Wrought Steel Buttwelding Induction Bends for Transportation and Distribution Systems
*B16.50	Wrought Copper and Copper Alloy Braze-Joint Pressure Fittings
*B16.51	Cast and Wrought Copper and Copper Alloy Press-Connect Pressure Fittings (draft)
* Not listed	in ASME B31.3

No.	Title
SP-42	Class 150 Corrosion Resistant Gate, Globe, Angle, Check Valves with Flanged, Butt Weld Ends
SP-43	Wrought Stainless Steel Butt-Welding Fittings
SP-44	Steel Pipeline Flanges
SP-51	Class 150LW Corrosion Resistant Cast Flanged Fittings
SP-58	Pipe Hangers and Supports Materials, Design and Manufacture
*SP-60	Connecting Flange Joint Between Tapping Sleeves and Tapping Valves
SP-65	High Pressure Chemical Industry Flanges and Threaded Stubs for Use with Lens Gaskets
*SP-67	Butterfly Valves
*SP-68	High Pressure-Offset Seat Butterfly Valves
*SP-69	Pipe Hangers and Supports Selection and Application
SP-70	Cast Iron Gate Valves, Flanged and Threaded Ends
SP-71	Cast Iron Swing Check valves, Flanged and Threaded Ends
SP-72	Ball Valves with Flanged or Butt-Welding Ends for General Service
SP-75	Specification for High Test Wrought Butt Welding Fittings
*SP-78	Cast Iron Plug Valves, Flanged and Threaded Ends
SP-79	Socket-Welding Reducer Inserts
SP-80	Bronze Gate, Globe, Angle and Check Valves
SP-81	Stainless Steel, Bonnetless, Flanged, Knife Gate Valves
SP-83	Class 3000 Steel Pipe Unions, Socket-Welding and Threaded
SP-85	Cast Iron Globe & Angle Valves, Flanged and Threaded Ends
*SP-87	Factory-Made Butt-Welding Fittings for Call 1 Nuclear Piping Applications
SP-88	Diaphragm Type Valves
SP-95	Swage(d) Nipples and Bull Plugs
SP-97	Integrally Reinforced Forged Branch Outley Fittings
*SP-99	Instrument Valves
*SP-103	Wrought Copper and Copper Alloy Insert Fittings for Polybutylene Systems
*SP-104	Wrought Copper Solder Joint Pressure Fittings
SP-105	Instrument Valves for Code Applications
*SP-106	Cast Copper Alloy Flanges and Flanged Fittings, Class 125, 150 and 300
*SP-107	Transition Union Fittings for Joining Metal and Plastic Products
*SP-108	Resilient-Seated Cast Iron-Eccentric Plug Valves
*SP-109	Welded Fabricated Copper Solder Joint Pressure Fittings
*SP-110	Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends
*SP-111	Gray-Iron and Ductile-Iron Tapping Sleeves
*SP-114	Corrosion Resistant Pipe Fittings Threaded and Socket Welding, Class 150 and 1000
*SP-115	Excess Flow Valves for Natural Gas Service
*SP-116	Service Line Valves and Fittings for Drinking Water Systems
*SP-118	Compact Steel Globe & Check Valves Flanged, Flangeless, Threaded and Welding Ends

MSS (Manufacturers Standardization Society of the Valve and Fittings Industry) Piping Component Standards

No.	Title
SP-119	Belled End Socket Welding Fittings, Stainless Steel and Copper Nickel
*SP-122	Plastic Industrial Ball Valves
*SP-123	Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube
*SP-124	Fabricated Tapping Sleeves
*SP-125	Gray Iron and Ductile Iron In-Line, Spring-Loaded, Center-Guided Check Valves
*SP-127	Bracing for Piping Systems Seismic-Wind-Dynamic Design, Selection, Application
* Not listed i	n ASME B31.3

* Not listed in ASME B31.3

API Piping Component Standards (selected)

No.	Title
5L	Line Pipe
*6D	Pipeline Valves (Gate, Plug, Ball, and Check Valves)
594	Check Valves: Wafer, Wafer-lug and Double Flanged Type
599	Metal Plug Valves – Flanged and Welding Ends
600	Bolted Bonnet Steel Gate Valves for Petroleum and Natural Gas Industries – Modified National Adoption of ISO 10434
602	Compact Steel Gate Valves – Flanged, Threaded, Welding, and Extended Body Ends
603	Corrosion-Resistant, Bolted Bonnet Gate ValvesFlanged and Butt-Welding Ends
608	Metal Ball Valves – Flanged, Threaded and Butt-Welding Ends
609	Butterfly Valves: Double Flanged, Lug- and Wafer-Type

* Not listed in ASME B31.3

ASTM Piping Component Standards (selected)

No.	Title
A53	Pipe, Steel, Black and Hot-Dipped, Zinc Coated, Welded and Seamless
A106	Seamless Carbon Steel Pipe for High-Temperature Service
A234	Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and Elevated Temperature
A312	Seamless and Welded Austenitic Stainless Steel Pipe
A333	Seamless and Welded Steel Pipe for Low-Temperature Service
A403	Wrought Austenitic Stainless Steel Piping Fittings
B75	Seamless Copper Tube
B88	Seamless Copper Water Tube
B165	Nickel-Copper Alloy (UNS N04400) Seamless Pipe and Tube
B167	Nickel-Chromium-Iron Alloy (UNS N06600-N06690) Seamless Pipe and Tube
B241	Aluminum-Alloy Seamless Pipe and Seamless Extruded Tube
B280	Seamless Copper Tube for Air Conditioning and Refrigeration Fluid Service
B337	Seamless and Welded Titanium and Titanium Alloy Pipe
B361	Factory-Made Wrought Aluminum and Aluminum-Alloy Welding Fittings
B366	Factory-Made Wrought Nickel and Nickel-Alloy Welding Fittings
B658	Zirconium and Zirconium Alloy Seamless and Welded Pipe
C599	Process Glass Pipe and Fittings
D1785	PVC Plastic Pipe

No.	Title
D2282	ABS Plastic Pipe (SDR-PR)
D2464	Threaded PVC Plastic Pipe Fittings, Sch 80
D2468	Socket-Type ABS Plastic Pipe Fittings, Sch 40
D2517	Reinforced Epoxy Resin Gas Pressure Pipe and Fittings
D2846	CPVC Plastic Hot and Cold Water Distribution Systems
D3261	Butt Heat Fusion PE Plastic Fittings for PE Plastic Pipe and Tubing
D5421	Contact Molded Fiberglass RTR Flanges
F423	PTFE Plastic-Lined Ferrous Metal Pipe and Fittings
F492	Polypropylene and PP Plastic-Lined Ferrous Metal Pipe and Fittings

AWWA Piping Component Standards (selected)

No.	Title
*C104	Cement-Mortar Lining for Ductile-Iron Pipe and Fittings for Water
C110	Ductile-Iron and Gray-Iron Fittings, 3 In48 In. (76 mm-1,219 mm), for Water
C115	Flanged Ductile-Iron Pipe with Ductile-Iron or Gray-Iron Threaded Flanges
C151	Ductile-Iron Pipe, Centrifugally Cast, for Water
*C153	Ductile-Iron Compact Fittings for Water Service
C300	Reinforced Concrete Pressure Pipe, Steel Cylinder Type, for Water and Other Liquids
C302	Reinforced Concrete Pressure Pipe, Noncylinder Type, for Water and Other Liquids
*C501	Cast-Iron Sluice Gates
*C502	Dry-Barrel Fire Hydrants
*C503	Wet-Barrel Fire Hydrants
C504	Rubber-Seated Butterfly Valves
*C507	Ball Valves, 6 In. Through 48 In. (150 mm Through 1,200 mm)
*C508	Swing-Check Valves for Waterworks Service, 2 In. (50 mm) Through 24 In.(600 mm) NPS
*C509	Resilient-Seated Gate Valves for Water Supply Service
*C510	Double Check Valve Backflow Prevention Assembly
*C511	Reduced-Pressure Principle Backflow Prevention Assembly
C900	PVC Pressure Pipe, 4-inch through 12-inch, for Water
C950	Glass-Fiber-Reinforced Thermosetting Resin Pressure Pipe

* Not listed in ASME B31.3

Canadian Standards Association

No.	Title
*Z245.1	Steel Pipe
*Z245.6	Coiled Aluminum Line Pipe and Accessories
*Z245.11	Steel Fittings
*Z245.12	Steel Flanges
*Z245.15	Steel Valves
* Not listed	in ASME D21.2

* Not listed in ASME B31.3

ASME B16.5 Flange Ratings - Carbon Steel (US Customary Units - psi)

Temp (F)	Class 150	Class 300	Class 600	Class 900	Class 1500	Class 2500
min to 100	285	740	1480	2220	3705	6170
200	260	680	1360	2035	3395	5655
300	230	655	1310	1965	3270	5450
400	200	635	1265	1900	3170	5280
500	170	605	1205	1810	3015	5025
600	140	570	1135	1705	2840	4730
650	125	550	1100	1650	2745	4575
700	110	530	1060	1590	2655	4425
750	95	505	1015	1520	2535	4230
800	80	410	825	1235	2055	3430
850	65	320	640	955	1595	2655
900	50	230	460	690	1150	1915
950	35	135	275	410	685	1145
1000	20	85	170	255	430	715

BECHT ENGINEERING COMPANY, INC.

ASME B16.5 Flange Ratings	- Carbon Steel	(Metric Units -	· bar)
---------------------------	----------------	-----------------	--------

-	Class	Class	Class	Class	Class	Class
Temp (C)	150	300	600	900	1500	2500
min to 38	19.6	51.1	102.1	153.2	255.3	425.5
50	19.2	50.1	100.2	150.4	250.6	417.7
100	17.7	46.6	93.2	139.8	233.0	388.3
150	15.8	45.1	90.2	135.2	225.4	375.6
200	13.8	43.8	87.6	131.4	219.0	365.0
250	12.1	41.9	83.9	125.8	209.7	349.5
300	10.2	39.8	79.6	119.5	199.1	331.8
325	9.3	38.7	77.4	116.1	193.6	322.6
350	8.4	37.6	75.1	112.7	187.8	313.0
375	7.4	36.4	72.7	109.1	181.8	303.1
400	6.5	34.7	69.4	104.2	173.6	289.3
425	5.5	28.8	57.5	86.3	143.8	239.7
450	4.6	23.0	46.0	69.0	115.0	191.7
475	3.7	17.4	34.9	52.3	87.2	145.3
500	2.8	11.8	23.5	35.3	58.8	97.9
538	1.4	5.9	11.8	17.7	29.5	49.2

ASME B16.5 Flange Ratings -	Type 316 Stainless Steel	(US Customary Units - psi)	
Aomic Difu.s i lange Natings –	Type 5 to Stanness Steel	(00 Gustomary Onits - psi)	

Temp (F)	Class 150	Class 300	Class 600	Class 900	Class 1500	Class 2500
min to 100	275	720	1440	2160	3600	6000
200	235	620	1240	1860	3095	5160
300	215	560	1120	1680	2795	4660
400	195	515	1025	1540	2570	4280
500	170	480	955	1435	2390	3980
600	140	450	900	1355	2255	3760
650	125	440	885	1325	2210	3680
700	110	435	870	1305	2170	3620
750	95	425	855	1280	2135	3560
800	80	420	845	1265	2110	3520
850	65	420	835	1255	2090	3480
900	50	415	830	1245	2075	3460
950	35	385	775	1160	1930	3220
1000	20	365	725	1090	1820	3030
1050		360	720	1080	1800	3000
1100		305	610	915	1525	2545
1150		235	475	710	1185	1970
1200		185	370	555	925	1545
1250		145	295	440	735	1230
1300		115	235	350	585	970
1350		95	190	290	480	800
1400		75	150	225	380	630
1450		60	115	175	290	485
1500		40	85	125	205	345

Temp (C)	Class 150	Class 300	Class 600	Class 900	Class 1500	Class 2500
38	19.0	49.6	99.3	148.9	248.2	413.7
50	18.4	48.1	96.2	144.3	240.6	400.9
100	16.2	42.2	84.4	126.6	211.0	351.6
150	14.8	38.5	77.0	115.5	192.5	320.8
200	13.7	35.7	71.3	107.0	178.3	297.2
250	12.1	33.4	66.8	100.1	166.9	278.1
300	10.2	31.6	63.2	94.9	158.1	263.5
325	9.3	30.9	61.8	92.7	154.4	257.4
350	8.4	30.3	60.7	91.0	151.6	252.7
375	7.4	29.9	59.8	89.6	149.4	249.0
400	6.5	29.4	58.9	88.3	147.2	245.3
425	5.5	29.1	58.3	87.4	145.7	242.9
450	4.6	28.8	57.7	86.5	144.2	240.4
475	3.7	28.7	57.3	86.0	143.4	238.9
500	2.8	28.2	56.5	84.7	140.9	235.0
538	1.4	25.2	50.0	75.2	125.5	208.9
550		25.0	49.8	74.8	124.9	208.0
575		24.0	47.9	71.8	119.7	199.5
600		19.9	39.8	59.7	99.5	165.9
625		15.8	31.6	47.4	79.1	131.8
650		12.7	25.3	38.0	63.3	105.5
675		10.3	20.6	31.0	51.6	86.0
700		8.4	16.8	25.1	41.9	69.8
725		7.0	14.0	21.0	34.9	58.2
750		5.9	11.7	17.6	29.3	48.9
775		4.6	9.0	13.7	22.8	38.0
800		3.5	7.0	10.5	17.4	29.2
816		2.8	5.9	8.6	14.1	23.8

ASME B16.5 Flange Ratings – Type 316 Stainless Steel (Metric Units - bar)

SEAMLESS MANUFACTURING PROCESS AT USS TUBULAR #3 MILL - 10.75" TO 26" O.D. (http://www.usstubular.com/facilities/splplo.htm)

Rotary Straightener Here the pipe is brought to the required straightness. The "crop ends" of standard seamless are then cut off before end beveling.	NDT Inspection At this station pipe is electromagnetically inspected to detect body wall imperfections.	Facing and Beveling An expanding arbor holds the pipe in line while a revolving head faces and bevels the end of the pipe.	Hydrostatic Testing The finished pipe is visually inspected and is subjected to a hydrostatic test as a strength and leak check before shipping.
Final Inspection A final visual inspection is given the pipe prior to stenciling, loading and shipping			

ELECTRIC RESISTANCE WELD (ERW) MANUFACTURING PROCESS AT USS TUBULAR- 8.625" TO 20" O.D. (http://www.usstubular.com/facilities/erw.htm)

Coil Feed Ramp Coils are removed from storage and placed on a feed ramp. Here each coil is positioned on the center line of the mill and fed into the uncoiling unit. The leading edge feeds into the pinch rolls preceding the flattener. An electrically operated shear cuts off the end of each coil so that the coils can be welded together to form a continuous strip	Fin Pass Section The section of the forming rolls finishes the rounding brocess and contours the edges of the strip for welding.	High Frequency Welder The High Frequency Welder heats the edges of the strip to approximately 2600°F [1400°C] at the fusion point location. Pressure rolls then squeeze the heated edges together to form a fusion weld.
---	--	---

Page 18 Rev. 3/10/06

			Eluing Cut Off As the
In-Process Weld Non-		Sizing Mill Here the pipe	continuous length moves
Destructive Inspection After welding, the weld is	Seam Normalizer Here the weld area is	passes through the sizing mill with idler side-closing rolls between the strands.	down the mill, the flying cut-off cuts a designated
non-destructive inspection	post-weld treatment as	This process sizes the	length of pipe without
units.	metallurgically required to	pipe to proper outside	product flow of the mill.
	and produce a uniform	the pipe at the same time.	
	normalized grain structure.		
Hydrostatic Testing Each	6 G		
length of pipe is subjected		Non-Destructive Inspection The pipe now	Cut-Off Facilities This
strength and leak check.	the pipe is now removed	enters the finishing floor	facility provides test
	by a series of horizontal	ultrasonically inspected	cuts out defects detected
	deflection rolls.	and the pipe body is	by nondestructive
		electromagnetic means.	
	AN DOOD		
	Final Inspection A final		
Facing and Beveling	visual inspection is given		
Carbide tools cut the	computerized weighing		
pipe.	and measuring in		
	preparation for stenciling, loading and shipping.		

Page 19 Rev. 3/10/06

BRANCH CONNECTIONS

	Тее	Unreinforced Fabricated Tee	Reinforced Fabricated Tee	Branch Connection Fitting
			Vent	
Stress Intensification Factor (NPS 8 STD WT header)	2.3	4.9	2.5	2.2
Effective examination methods	Radiographic Visual	Visual	Visual	Visual

CHARACTERISTICS OF SELECTED GASKET TYPES

Caskat	Chamical	Appro: Max	ximate Femp	Fire	Plaw out	Look	Strength
Type Resistance		°F °C		Resistance	Resistance	Performance	Required
Rubber	OK for most	200	95	No	No	Best	Low
Reinforced Rubber	OK for most	325	160	No	No	Fair	Low
PTFE	OK for almost all	350	180	No	No	Good	Low
Flexible Graphite	OK for almost all	900 (625)	480 (330)	Yes	No, unless thicker metal insert	Good	Medium
Kammprofile	Both metal & sealing material have to be OK	1500	820	Depends on sealing material	Yes	Good	Medium
Spiral Wound	Both metal winding & filler have to be OK	1500	820	Depends on filler	Yes	Good	Medium to High
Ring Joint	Metal has to be OK	1500	820	Yes	Yes	Good	High

CHARACTERISTICS OF SELECTED BOLTING

Material	Low Strength	Medium Strength	High Strength
Carbon Steel	A307		
	SAE Gr 1		
	SAE Gr 5		
Low Alloy	SAE Gr 5	A193 Gr B7M, hardness	A193 Gr B7
Steel		controlled	A193 Gr B16, high temperature
			A320 Gr L7, low temperature
Stainless Steel	A193 Gr B8 – 304 SS	A193 Gr B8 Cl 2– 304 SS	
	A193 Gr B8M – 316 SS	A193 Gr B8M Cl2 – 316 SS	

BECHT ENGINEERING COMPANY, INC.

	Type of Material	Co Design Minimum Temperature at or 32	lumn A Above Min. Temp. in Table A-1 or Fig. 3.2.2A	Column B Design Minimum Temperature Below Min. Temp. in Table A-1 or Fig. 323.2.2A
	1 Gray cast iron	A-1 No additional requirements	B-1 No additional requirements	
	2 Malleable and ductile cast iron; carbon steel per Note (1)	A-2 No additional requirements		B-2 Materials designated in Box 2 shall not be used.
		(a) Base Metal	(b) Weld Metal and Heat Affected Zone (HAZ) [Note (2)]	
	3 Other carbon steels; low and intermediate alloy steels; high alloy ferritic steels; duplex stainless steels	A-3 (a) No additional requirements	A-3 (b) Weld metal deposits shall be impact tested per para. 323.3 if design min. temp. < -29°C (-20°F), except as provided in Notes (3) and (5), and except as follows: for materials listed for Curves C and D of Fig. 323.2.2A, where corresponding welding consumables are qualified by impact testing at the design minimum temperature or lower in accordance with the applicable AWS specification, additional testing is not required.	B-3 Except as provided in Notes (3) and (5), heat treat base metal per applicable ASTM specification listed in para. 323.3.2; then impact test base metal, weld deposits, and HAZ per ¹ para. 323.3 [see Note (2)]. When materials are used at design min. temp. below the assigned curve as permitted by Notes (2) and (3) of Fig. 323.2.2A, weld deposits and HAZ shall be impact tested [see Note (2)].
Listed materials	4 Austenitic stainless steels	 A-4 (a) If: (1) carbon content by analysis > 0.1%; or (2) material is not in solution heat treated condition; then, impact test per para. 323.3 for design min. temp. < -29°C (-20°F) except as provided in Notes (3) and (6) 	A-4 (b) Weld metal deposits shall be impact tested per para. 323.3 if design min. temp. < -29°C (-20°F) except as provided in para. 323.2.2 and in Notes (3) and (6)	B-4 Base metal and weld metal deposits shall be impact tested per para. 323.3. See Notes (2), (3), and (6).
	5 Austenitic ductile iron, ASTM A 571	A-5 (a) No additional requirements	A-5 (b) Welding is not permitted	B-5 Base metal shall be impact tested per para. 323.3. Do not use < -196°C (-320°F). Welding is not permitted.
Materials	6 Aluminum, copper, nickel, and their alloys; unalloyed titanium	A-6 (a) No additional requirements	A-6 (b) No additional requirements unless filler metal composition is outside the range for base metal composition; then test per column B-6	B-6 Designer shall be assured by suitable tests [see Note (4)] that base metal, weld deposits, and HAZ are suitable at the design min. temp.
Unlisted	7 An unlisted material shall on listed material, requiremen applicable section of colum	conform to a published specification. W ts for the corresponding listed material n B.	here composition, heat treatment, and prod shall be met. Other unlisted materials shall	uct form are comparable to those of a be qualified as required in the

TABLE 323.2.2 REQUIREMENTS FOR LOW TEMPERATURE TOUGHNESS TESTS FOR METALS These Toughness Test Requirements Are in Addition to Tests Required by the Material Specification

See notes on the next page.

NOTES:

- (1) Carbon steels conforming to the following are subject to the limitations in Box B-2; plates per ASTM A 36, A 283, and A 570; pipe per ASTM A 134 when made from these plates; and pipe per ASTM A 53 Type-F and API 5L Gr. A25 buttweld.
- (2) Impact tests that meet the requirements of Table 323.3.1, which are performed as part of the weld procedure qualification, will satisfy all requirements of para. 323.2.2, and need not be repeated for production welds.
- (3) Impact testing is not required if the design minimum temperature is below -29°C (-20°F) but at or above -104°C (-155°F) and the Stress Ratio defined in Fig. 323.2.2B does not exceed 0.3 times S.
- (4) Tests may include tensile elongation, sharp-notch tensile strength (to be compared with unnotched tensile strength), and/or other tests, conducted at or below design minimum temperature. See also para. 323.3.4.
- (5) Impact tests are not required when the maximum obtainable Charpy specimen has a width along the notch of less than 2.5 mm (0.098 in.). Under these conditions, the design minimum temperature shall not be less than the lower of -48°C (-55°F) or the minimum temperature for the material in Table A-1.
- (6) Impact tests are not required when the maximum obtainable Charpy specimen has a width along the notch of less than 2.5 mm (0.098 in.).

Page 22 Rev. 3/10/06

NOTES:

(1) Any carbon steel material may be used to a minimum temperature of -29° C (-20° F) for Category D Fluid Service.

(2) X Grades of API 5L, and ASTM A 381 materials, may be used in accordance with Curve B if normalized or quenched and tempered(3) The following materials may be used in accordance with Curve D if normalized:

- (a) ASTM A 516 Plate, all grades:
- (b) ASTM A 671 Pipe, Grades CE55, CE60, and all grades made with A 516 plate;
- (c) ASTM A 672 Pipe, Grades E55, E60, and all grades made with A 516 plate.
- (4) A welding procedure for the manufacture of pipe or components shall include impact testing of welds and HAZ for any design minimum temperature below -29°C (-20°F), except as provided in Table 323.2.2, A-3(b).
- (5) Impact testing in accordance with para. 323.3 is required for any design minimum temperature below -48°C (-55°F), except a permitted by Note (3) in Table_323.2.2.
- (6) For blind flanges and blanks, \overline{T} shall be $\frac{1}{4}$ of the flange thickness.

FIG. 323.2.2A MINIMUM TEMPERATURES WITHOUT IMPACT TESTING FOR CARBON STEEL MATERIALS

(See Table A-1 for Designated Curve for a Listed Material) (See Table 323.2.2A for tabular values)

Page 23 Rev. 3/10/06

GENERAL NOTES:

- (a) The Stress Ratio is defined as the maximum of the following:
 - (1) nominal pressure stress (based on minimum pipe wall thickness less allowances) divided by S at the design minimum temperature;
 - (2) for piping components with pressure ratings, the pressure for the condition under consideration divided by the pressure rating at the design minimum termperature;
 - (3) combined longitudinal stess due to pressure, dead weight, and displacement strain (stress intensification factors are not included in this calulation) divided by S at the design minimum temperature. In calculating longitudinal stress, the forces and moments in the piping system shall be calculated using nominal dimensions and the stresses shall be calculated using section properties based on the nominal dimensions less corrosion, erosion, and mechanical allowances.
- (b) Loadings coincident with the metal temperature under consideration shall be used in determining the Stress Ratio as defined above.

FIG. 323.2.2B REDUCTION IN MINIMUM DESIGN METAL TEMPERATURE WITHOUT IMPACT TESTING

Page 24 Rev. 3/10/06

DESIGN PRESSURE AND TEMPERATURE WORKSHOP

B31.3 Appendix A – Allowable Stresses: Carbon Steel Example (1 of 2)

Table A-1

Page 25 Rev. 3/10/06

ASME B31.3-2002

		P-No. or			Min.	Specifie Strengt	d Min. th, ksi	Min.		
Material	Spec. No.	(5)	Grade	Notes	°F (6)	Tensile	Yield	to 100	200	300
Carbon Steel Pipes and Tubes	s (2)									
A 285 Gr. A	A 134	1		(8b)(57)	В	45	24	15.0	14.6	14.2
A 285 Gr. A	A 672	1	A45	(57)(59)(67)	В	45	24	15.0	14.6	14.2
Butt weld	API 5L	S-1	A25	(8a)	-20	45	25	15.0	15.0	14.5
Smls & ERW	API 5L	S-1	A25	(57)(59)	В	45	25	15.0	15.0	14.5
	A 179	1		(57)(59)	-20	47	26	15.7	15.0	14.2
Туре F	A 53	1	Gr. A	(8a)(77)	20	48	30	16.0	16.0	16.0
	A 139	S-1	А	(8b)(77)	A	48	30	16.0	16.0	16.0
	A 587	1		(57)(59)	-20	48	30	16.0	16.0	16.0
	A 53	1	А	(57)(59)]						
	A 106	1	А	(57)						
	A 135	1	А	(57)(59) -	В	48	30	16.0	16.0	16.0
	A 369	1	FPA	(57)						
	API 5L	S-1	A	(57)(59)(77)]						
A 285 Gr. B	A 134	1		(8b)(57)	В	50	27	16.7	16.4	16.0
A 285 Gr. B	A 672	1	A50	(57)(59)(67)	В	50	27	16.7	16.4	16.0
A 285 Gr. C	A 134	1		(8b)(57)	A	55	30	18.3	18.3	17.7
	A 524	1	Gr. II	(57)	-20	55	30	18.3	18.3	17.7
	A 333	1	1]							
	A 334	1	1 F	(57)(59)	-50	55	30	18.3	18.3	17.7
A 285 Gr. C	A 671	1	CA55	(59)(67)	A					
A 285 Gr. C	A 672	1	A55	(57)(59)(67)	A		~ ~			
A 516 Gr. 55	A 672	1	055	(57)(67)	сŢ	55	30	18.3	18.3	17.7
A 516 Gr. 60	A 671	1	CC60	(57)(67)	С	60	32	20.0	19.5	18.9
A 515 Gr. 60	A 671	1	CB60	()						
A 515 Gr. 60	A 672	1	B60 L	(57)(67)	В	60	32	20.0	19.5	18.9
A 516 Gr. 60	A 672	1	C60	(57)(67)	СŢ					
	A 139	S-1	В	(8b)	A	60	35	20.0	20.0	20.0
	A 135	1	В	(57)(59)	вΊ					
	A 524	1	Gr. 1	(57)	- 20 <u>}</u>	60	35	20.0	20.0	20.0
	A 53	1	В	(57)(59)	7					
	A 106	1	В	(57)	В					
	A 333]									
• • •	A 334 占	1	6	(57)	-50 -	60	35	20.0	20.0	20.0
	A 369	1	FPB	(57)	-20					
	A 381	S-1	Y35		A					
	API 5L	S-1	В	(57)(59)(77)	В					

TABLE A-1 (CONT'D) BASIC ALLOWABLE STRESSES IN TENSION FOR METALS¹ ers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indic

(continued)

Table A-1

B31.3 Appendix A – Allowable Stresses: Carbon Steel Example (2 of 2)

ASME B31.3-2002

TABLE A-1 (CONT'D) BASIC ALLOWABLE STRESSES IN TENSION FOR METALS¹ Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

			Basic All	owable S	tress <i>S</i> , I	(si (1), a	t Metal	Temperat	ure, °F ((7)				
400	500	600	650	700	750	800	850	900	9 50	1000	1050	1100	Grade	Spec. No
	-	4.00 U										· •	Pipe ar	Carbon Stee d Tubes (2)
137	13.0	11.8	11.6	115	10.3	9.0	7.8	6.5						A 134
13.7	13.0	11.8	11.6	11.5	10.3	9.0	7.8	6.5	4.5	2.5	1.6	1.0	A45	A 672
13.8								• • • • 1					A25	API 5L
13.8					•••								A25	API 5L
13.5	12.8	12.1	11.8	11.5	10.6	9.2	7.9	6.5	4.5	2.5	1.6	1.0	• • •	A 179
14.0						I							Gr. A	A 53
10.0			•••							• • •			A	A 139
16.0	16.0	14.8	14.5	14.4	10.7	9.3	7.9				• • •	• • •	••••	A 587
						I								A 53 A 106
16.0	16.0	14.8	14.5	14.4	10.7	9.3	7.9	6.5	4.5	2.5	1.6	1.0	- A FPA A	A 135 A 369 API 5L
						1							-	
15.4	14.6 14.6	13.3 13.3	13.1 13.1	13.0 13.0	11.2 11.2	9.6 9.6	8.1 8.1	6.5 6.5	 4.5	 2.5	 1.6	 1.0	 А 50	A 134 A 672
			-					ا ب ب						A 124
17.2	16.2	14.8	14.5	14.4	12.0	10.2	8.3	6.5 4 5		2.5		• • •	Gr II	Δ 524
17.2	16.2	14.8	14.5	14.4	12.0	10.2	0.2	0.5	4.5	2.5			Γ1	A 333
17.2	16.2	14.8	14.5	14.4	12.0	10.2	8.3	6.5	4.5	2.5	1.6	1.0	- 1	A 334
													CA55	A 671
													A55	A 672
17.2	16.2	14.8	14.5	14.4	12.1	10.2	8.4	6.5	4.5	2.5	1.6	1.0	-L C55	A 672
18.3	17.3	15.8	15.5	15.4	13.0	10.8	8.7	6.5	4.5	2.5			CC60	A 671
						1							CB60	A 671
18.3	17.3	15.8	15.5	15.4	13.0	10.8	8.7	6.5	4.5	2.5	1.6	1.0	C60	A 672 A 672
													В	A 139
I													ГB	Δ 135
20.0	18.9	17.3	17.0	16.5	13.0	10.8	8.7	6.5	4.5	2.5			-[Gr. 1	A 524
													Гв	A 53
													В	A 106
													6	A 333
20.0	18.9	17.3	17.0	16.5	13.0	10.8	8.7	6.5	4.5	2.5	1.6	1.0	- 6	A 334
													FPB	A 369
													Y35	A 381
													В	API 5L
														(continuea

Page 27 Rev. 3/10/06

B31.3 Appendix A – Allowable Stresses: Stainless Steel Example (1 of 2)

Table A-1

TABLE A-1 (CONT'D) BASIC ALLOWABLE STRESSES IN TENSION FOR METALS¹ Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

	<u>Case</u>	P-No. or			Min.	Spec Stre	ified ength,	Min. ksi	Min.					
Material	No.	(5)	Grade	Notes	°F (6)	Tensi	le	Yield	to 100	2 0 0	300	400	500	600
Stainless Steel (3) (4) (Co Pipes and Tubes (2) (Co	nt′d) nt′d)													
18Cr-10Ni-Cb pipe	A 312	8	TP347		-425	٦								
Туре 347 А 240	A 358	8	347	(30)(36)	-425									
18Cr-10Ni-Cb pipe	A 376	8	TP347	(30)(36)	-425									
18Cr-10Ni-Cb pipe	A 409	8	TP347	(30)(36)	425		75	30	20.0	20.0	20.0	20.0	19.9	19.3
18Cr-10Ni-Cb pipe	A 312	8	TP348		-325									
Type 348 A 240	A 358	8	348	(30)(36)	-325									
18Cr-10Ni-b pipe	A 376	8	TP348	(30)(36)	-325									
18Cr-10Ni-Cb pipe	A 409	8	TP348	(30)(36)	-325]								
23Cr-13Ni	A 451	8	CPH10 or CPH20	(12)(14)(28)(35)(39)	-325		70	30	20.0	20.0	20.0	20.0	20.0	19.2
25Cr-20Ni pipe	A 312	8	TP310	(28)(29)(35)(39)	325		75	30	20.0	20.0	20.0	20.0	20.0	19.2
Type 310S A 240	A 358	8	310S	(28)(29)(31)(35)(36)										
18Cr-10Ni-Cb	A 451	8	CPF8C	(28)	-325		70	30	20.0 /	20.0	20.0	20.0	19.3	18.3
18Cr-10Ni-Ti pipe smls $\leq \frac{3}{4}$ in the wid	A 312	8	TP321	(28)(30)]						
Type 321 A 240	A 358	8	321											
18Cr-10Ni-Ti nine	A 376]	0	264	L.	-425	1.	75	30-	20.0	20.0	20.0	20.0	19.3	18.3
$\leq \frac{3}{6}$ in thick		- 8	TP321	(28)(30)(36)				-•]	2010	2010	2010	2010		
18Cr-10Ni-Ti pipe	A 409	-		1										
18Cr-10Ni-Ti pipe	A 376	8	TP321H	(30)(36)	-325									
$\geq 7_8$ m. unick	A 212	0	тразни		375									
$smls \leq \frac{3}{8}$ in. thk; wid	A 312	0	113210		-525	J								
16Cr-12Ni-Mo tube	A 269	8	TP316	(14)(26)(28)(31)(36)	-425	٦								
16Cr-12Ni-2Mo nine	Δ 312	8	TP316	(26)(28)	-425									
Type 316 A 240	A 358	8	316	(26)(28)(31)(36)	-425									
16Cr-12Ni-2Mo pipe	A 376	8	TP316	(26)(28)(31)(36)	-425	L .	75	30	20.0	20.0	20.0	19.3	17.9	17.0
16Cr-12Ni-2Mo pipe	A 409	8	TP316	(26)(28)(31)(36)	-425									
18Cr-3Ni-3Mo pipe	A 312	8	TP317	(26)(28)	-325	1								
18Cr-3Ni-3Mo pipe	A 409	8	TP317	(26)(28)(31)(36)	-325									
16Cr-12Ni-2Mo pipe	A 376	8	TP316H	(26)(31)(36)	-325]								
16Cr-12Ni-2Mo pipe	A 312	8	ТР316Н	(26)	-325		75	30	20.0	20.0	20.0	19.3	17.9	17.0
18Cr-10Ni-Cb pipe	A 376	8	ТР347Н	(30)(36)	-325	٦								
18Cr-0Ni-Cb pipe	A 312	8	TP347	(28)	-425									
Type 347 A 240	A 358	8	347	(28)(30)(36)	-425									
18Cr-10Ni-Cb pipe	A 376	8	TP347	(28)(30)(36)	-425									
18Cr-10Nib pipe	A 409	8	TP347	(28)(30)(36)	-425		75	30	20.0	20.0	20.0	20.0	19.9	19.3
18Cr-10Ni-b pipe	A 312	8	TP348	(28)	-325									
Type 348 A 240	A 358	8	348	(28)(30)(36)	-325									
18Cr-10Ni-Cb pipe	A 376	8	TP348	(28)(30)(36)	-325									
18Cr-10Ni-Cb pipe	A 409	8	TP348	(28)(30)(36)	-325]								
18Cr-10Ni-Cb pipe	A 312	8	TP347H											
18Cr-10Ni-Cb pipe	A 312	8	ТР348Н ├	• • •	-325		75	30	20.0	20.0	20.0	20.0	19.9 (con	19.3

ASME B31.3-2002

B31.3 Appendix A – Allowable Stresses: Stainless Steel Example (2 of 2)

ASME B31.3-2002

TABLE A-1 (CONT'D) BASIC ALLOWABLE STRESSES IN TENSION FOR METALS¹

Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

					Basi	c Allowa	able Stre	ss <i>S</i> , ksi	(1), at I	Metal Te	mperatur	e, °F (7)						
650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	Grade	Spec. No.
																	SI P	tainless Steel (3) (4) ipes and Tubes (2) (C	(Cont'd) cont'd)
																		TP347	A 312
							×.1											347 TP347	A 358
19.0	18.6	18.5	18.4	18.2	18.1	18.1	18.0	12.1	9.1	6.1	4.4	3.3	2.2	1.5	1.2	0.9	0.8	- TP347	A 370
																		TP348	A 312
																		348	A 358
																		TP348	A 376
																		TP348	A 409
18.8	18.3	18.0	17.4	13.5	13.3	12.4	10.5	8.4	6.4	5.0	3.7	2.9	2.3	1.7	1.3	0.9	0.8	CPH10 or CPH20	A 451
18.8	18.3	18.0	17.5	14.6	13.9	12.5	11.0	9.8	8.5	7.3	6.0	4.8	3.5	2.3	1.6	1.1	0.8	- TP310	Δ 312
																	0.0	3105	A 358
18.0	17.5	17.2	17.1	14.0	1 <i>3</i> .9	13.7	13.4	13.0	10.8	8.0	5.0	3.5	2.7	2.0	1.4	/ 1.1	1.0	CPF8C	A 451
																		TP321	A 312
																		321	A 358
17.9	17.5	17.2	16.9	16.7	16.6	16.4	16.2	11.7	9.1	6.9	5.4	4.1	3.2	2.5	1.9	1.5	1.1 -	TP321	A 376
																		TP321	A 409
																		ТР321Н	A 376
																		TP321H	A 312
																		Гтезіб	A 260
																			A 209
																		TP316	A 312
																		316	A 358
16.7	16.3	16.1	15.9	15.7	15.5	15.4	15.3	14.5	12.4	9.8	7.4	5.5	4.1	3.1	2.3	1.7	1.3 -	TP316	A 376
																		TP316	A 409
																		TP317	A 312
																		TP317	A 409
																		L ^{1 P316H}	A 376
16.7	16.3	16.1	15.9	15.7	15.5	15.4	15.3	14.5	12.4	9.8	7.4	5.5	4.1	3.1	2.3	1.7	1.3	ТР316Н	A 312
																		ТР347Н	A 376
							1											TP347	A 312
																		347	A 358
10.0	19.4	105	101	10.2	101	101	10.0		74.0									TP347	A 376
17.0	10.0	10.0	10.4	10.2	10.1	10.1	10.01	17.1	14.2	10.5	7.9	5.9	4.4	3.2	2.5	1.8	1.3 -	1 1 1 2 3 4 7	A 409
																		117348	A 312
																		248 TP348	A 358
																		TP348	A 2100
																		_	N 409
10.0	10/	10 5	10 /	10.0	10 7	101	10.0											ТР347Н	A 312
19.0	10.0	10.5	10.4	18.2	10.1	19'T	18.0	17.1	14.2	10.5	7.9	5.9	4.4	3.2	2.5	1.8	1.3 -	ίΤΡ348Η	A 312
																		(coi	ntinued)

Page 28 Rev. 3/10/06

Table A-1

B31.3 Appendix A – Quality Factors Example (1 of 2)

ASME B31.3-2002

TABLE A-1B

BASIC QUALITY FACTORS FOR LONGITUDINAL WELD JOINTS IN PIPES, TUBES, AND FITTINGS E_j These quality factors are determined in accordance with para. 302.3.4(a). See also para. 302.3.4(b) and Table 302.3.4 for increased quality factors applicable in special cases. Specifications, except API, are ASTM.

Spec. No.	Class (or Type)	Description	<i>E_j</i> (2)	Appendix A Notes
Carbon Steel				
API 5L		Seamless pipe	1.00	
		Electric resistance welded pipe	0.85	
		Electric fusion welded pipe, double butt, straight or spiral seam	0.95	
	• • •	Furnace butt welded	0.60	
A 53	Туре S	Seamless pipe	1.00	
	Туре Е	Electric resistance welded pipe	0.85	· · · ·
	Туре F	Furnace butt welded pipe	0.60	
A 105		Forgings and fittings	1.00	(9)
A 106		Seamless pipe	1.00	
A 134		Electric fusion welded pipe, single butt, straight or spiral seam	0.80	
A 135		Electric resistance welded pipe	0.85	
A 139	• • •	Electric fusion welded pipe, straight or spiral seam	0.80	•••
A 179		Seamless tube	1.00	
A 181		Forgings and fittings	1.00	(9)
A 234		Seamless and welded fittings	1.00	(16)
A 333		Seamless pipe	1.00	
		Electric resistance welded pipe	0.85	
A 334		Seamless tube	1.00	
A 350		Forgings and fittings	1.00	(9)
A 369		Seamless pipe	1.00	
A 381		Electric fusion welded pipe, 100% radiographed	1.00	(18)
		Electric fusion welded pipe, spot radiographed	0.90	(19)
		Electric fusion welded pipe, as manufactured	0.85	• • •
A 420		Welded fittings, 100% radiographed	1.00	(16)
A 524		Seamless pipe	1.00	
A 587		Electric resistance welded pipe	0.85	
A 671	12, 22, 32, 42, 52	Electric fusion welded pipe, 100% radiographed	1.00	
	13, 23, 33, 43, 53	Electric fusion welded pipe, double butt seam	0.85	
A 672	12, 22, 32, 42, 52	Electric fusion welded pipe, 100% radiographed	1.00	
	13, 23, 33, 43, 53	Electric fusion welded pipe, double butt seam	0.85	
A 691	12, 22, 32, 42, 52	Electric fusion welded pipe, 100% radiographed	1.00	
	13, 23, 33, 43, 53	Electric fusion welded pipe, double butt seam	0.85	
Low and Intern	nediate Alloy Steel			
A 182		Forgings and fittings	1.00	(9)
A 234		Seamless and welded fittings	1.00	(16)
A 333		Seamless pipe	1.00	
		Electric resistance welded pipe	0.85	
				(continued

Page 29 Rev. 3/10/06

Table A-1B

BECHT ENGINEERING COMPANY, INC.

B31.3 Appendix A – Quality Factors Example (2 of 2)

Table A-1B

ASME B31.3-2002

TABLE A-1B (CONT'D)

BASIC QUALITY FACTORS FOR LONGITUDINAL WELD JOINTS IN PIPES, TUBES, AND FITTINGS E_j These quality factors are determined in accordance with para. 302.3.4(a). See also para. 302.3.4(b) and Table 302.3.4 for increased quality factors applicable in special cases. Specifications, except API, are ASTM.

Spec. No.	Class (or Type)	Description	<i>E_j</i> (2)	Appendix A Notes
Low and Inte	ermediate Alloy Steel (Cont'd)			
A 334	• • •	Seamless tube	1.00	
A 335	- · · ·	Seamless pipe	1.00	
A 350	···· • •	Forgings and fittings	1.00	
A 369		Seamless pipe	1.00	
A 420		Welded fittings, 100% radiographed	1.00	(16)
A 671	12, 22, 32, 42, 52	Electric fusion welded pipe, 100% radiographed	1.00	
	13, 23, 33, 43, 53	Electric fusion welded pipe, double butt seam	0.85	
A 672	12, 22, 32, 42, 52	Electric fusion welded pipe, 100% radiographed	1.00	
	13, 23, 33, 43, 53	Electric fusion welded pipe, double butt seam	0.85	
A 691	12, 22, 32, 42, 52	Electric fusion welded pipe, 100% radiographed	1.00	
	13, 23, 33, 43, 53	Electric fusion welded pipe, double butt seam	0.85	
Stainless Ste	el		,	1
A 182		Equainan and filtings	,	
A 102		Forgings and fittings	1.00	
A 268		Seamless tube	1.00	
		Electric fusion welded tube, double butt seam	0.85	
		Electric fusion welded tube, single butt seam	0.80	
A 269		Seamless tube	1.00	
		Electric fusion welded tube, double butt seam	0.85	
		Electric fusion welded tube, single butt seam	0.80	
A 312		Seamless tube	1.00	
	· · · ·	Electric fusion welded tube, double butt seam	0.85	· · ·
	• • •	Electric fusion welded tube, single butt seam	0.80	
A 358	1, 3, 4	Electric fusion welded pipe, 100% radiographed	1.00	
	5	Electric fusion welded pipe, spot radiographed	0.90	
	2	Electric fusion welded pipe, double butt seam	0.85	
A 376		Seamless pipe	1.00	
A 403		Seamless fittings	1.00	
		Welded fitting, 100% radiographed	1.00	(16)
		Welded fitting, double butt seam	0.85	
	•••	Welded fitting, single butt seam	0.80	
A 409		Electric fusion welded pipe, double butt seam	0.85	
		Electric fusion welded pipe, single butt seam	0.80	
A 487		Steel castings	0.80	(9)(40)
A 789		Seamless tube	1.00	
		Electric fusion welded, 100% radiographed	1.00	
		Electric fusion welded, double butt	0.85	
		Electric fusion welded, single butt	0.80	
A 790		Seamless pipe	1.00	
		Electric fusion welded, 100% radiographed	1.00	
		Electric fusion welded, double butt	0.85	
		Electric fusion welded, single butt	0.80	
				(continued)

CALCULATING REQUIRED WALL THICKNESS FOR STRAIGHT PIPE

PD

= ______2 (SEW + PY)

Where:

t

t = pressure design thickness

- P = internal design gauge pressure
- D = outside diameter of pipe
- S = allowable stress value for material from piping code at the design temperature
- E = longitudinal weld joint quality factor from piping code (next page)
- W = weld joint strength reduction factor
 - = 1.0 for all materials 950°F (510°C) and cooler
- Y = coefficient. See the next page. The following values generally apply:
 - = 0.4 for ductile metals 900°F (482°C) and cooler
 - = 0.0 for cast iron

The minimum nominal new thickness required is the sum of:

pressure design thickness (t)

- + manufacturing tolerance (ASTM A53 allows plus or minus 12.5%)
- + corrosion (or erosion) allowance
- + threading allowance

STRAIGHT PIPE WALL THICKNESS WORKSHOP

1. What is the required nominal pipe wall thickness for NPS 1 and NPS 8 for the following case? Styrene monomer service

ASTM A53 Gr B ERW carbon steel pipe Design pressure and temperature from Problems 1 and 2, page 25 S = 20,000 psi (138 MPa) - verify Corrosion allowance = 1/8" (3.2 mm) Socket welding thru NPS 1½ Buttwelding NPS 2 and larger

2. If the construction was threading instead of socket welding NPS ³/₄ through 1¹/₂, what would the wall thickness have to be for NPS 1? [See discussion on Threaded Joint Fluid Service Requirements in Section 2 and para. 314.]

VALUES OF COEFFICIENT Y

When the pressure design thickness is less than 1/6 of the pipe outside diameter, the following values apply:

	≤900°F	950°F	1000°F	1050°F	1100°F	≥1150°F
	≤482°C	510°C	538°C	566°C	593°C	≥ 621°C
Ferritic Steels	0.4	0.5	0.7	0.7	0.7	0.7
Austenitic Steels	0.4	0.4	0.4	0.4	0.5	0.7
Other Ductile Metals	0.4	0.4	0.4	0.4	0.4	0.4
Cast Iron	0.0					

The factor Y increases with increasing temperature. At elevated temperatures, when creep effects become significant, creep leads to a more even distribution of stress across the pipe wall thickness. The larger factor Y leads to a decrease in the calculated wall thickness for the same allowable stress.

When the pressure design thickness is greater than or equal to 1/6 of the pipe outside diameter, the following equation applies:

$$Y = \frac{d+2c}{D+d+2c}$$

Where:

- d = inside diameter of the pipe
- D = outside diameter of the pipe

c = corrosion (or erosion) allowance plus threading allowance

ASME B31.3-2002

302.3.5

No.	Туре с	of Joint	Type of Seam	Examination	Factor,
1	Furnace butt weld, continuous weld		Straight	As required by listed specification	0.60 [Note (1)]
2	Electric resistance weld		Straight or spiral	As required by listed specification	0.85 [Note (1)]
3	Electric fusion weld				
	(a) Single butt weld		Straight or spiral	As required by listed specification or this Code	0.80
	(with or without filler metal)			Additionally spot radiographed per para. 341.5.1	0.90
				Additionally 100% radiographed per para. 344.5.1 and Table 341.3.2	1.00
	(b) Double butt weld		Straight or spiral [except as provided in 4(a) below]	As required by listed specification or this Code	0.85
	(with or without filler metal)			Additionally spot radiographed per para. 341.5.1	0.90
				Additionally 100% radiographed per para. 344.5.1 and Table 341.3.2	1.00
4	Per specific specification			· · · · · · · · · · · · · · · · · · ·	
	(a) API 5L	Submerged arc weld (SAW) Gas metal arc weld (GMAW) Combined GMAW, SAW	Straight with one or two seams Spiral	As required by specification	0.95

TABLE 302.3.4

NOTE: (1) It is not permitted to increase the joint quality factor by additional examination for joint 1 or 2.

Page 34 Rev. 3/10/06

PIPE DIMENSIONS AND PROPERTIES IN US CUSTOMARY UNITS

NPS	OD in	חו	Schedule	Wall Thickness, in	Inside Diameter,	Weight of Steel Pipe, Ibm/ft	Weight of Water,	Moment of Inertia, in4	Section Modulus, in3
	00, 11.		40	0.068	0.260	0.244	0.025	0.0011	0.0053
1/8	0.405	31D YS	40 80	0.005	0.209	0.244	0.025	0.0011	0.0055
			40	0.095	0.213	0.314	0.010	0.0012	0.0000
1/4	0.540	XS	80	0.000	0.304	0.424	0.043	0.0033	0.0123
			40	0.119	0.302	0.554	0.031	0.0030	0.0139
3/8	0.675	XS	80	0.031	0.433	0.307	0.000	0.0075	0.0210
		70	105	0.120	0.423	0.730	0.001	0.0000	0.0233
			40	0.005	0.674	0.070	0.133	0.0143	0.0341
1/2	0.840	Ve	40	0.109	0.022	1.00	0.132	0.0171	0.0407
1/2	0.040	7.5	160	0.147	0.040	1.09	0.101	0.0201	0.0478
		-	100	0.100	0.404	1.31	0.073	0.0222	0.0528
		~~~	105	0.294	0.252	0.956	0.022	0.0242	0.0577
		- 9TD	103	0.003	0.004	0.000	0.200	0.0297	0.0500
3/4	1 050	51D V9	40	0.113	0.024	1.13	0.231	0.0370	0.0703
3/4	1.050	72	00 160	0.154	0.742	1.47	0.107	0.0440	0.0653
		-	100	0.219	0.012	1.94	0.127	0.0520	0.101
		772	-	0.308	0.434	2.44	0.064	0.0579	0.110
			105	0.109	1.097	1.40	0.410	0.0757	0.115
1	1 215	SID	40	0.133	1.049	1.08	0.375	0.0873	0.133
	1.315	72	80	0.178	0.959	2.16	0.313	0.105	0.160
		-	160	0.250	0.815	2.84	0.226	0.125	0.190
		XXS	-	0.358	0.599	3.66	0.122	0.140	0.214
		-	105	0.109	1.442	1.80	0.708	0.160	0.193
4 4 14	4 000	SID	40	0.140	1.380	2.27	0.648	0.195	0.235
1-1/4	1.660	XS	80	0.191	1.278	2.99	0.556	0.242	0.291
		-	160	0.250	1.160	3.76	0.458	0.284	0.342
		XXS	-	0.382	0.896	5.21	0.273	0.341	0.411
		-	105	0.109	1.682	2.08	0.963	0.247	0.260
		SID	40	0.145	1.610	2.71	0.882	0.310	0.326
1-1/2	1.900	XS	80	0.200	1.500	3.63	0.766	0.391	0.412
		-	160	0.281	1.338	4.85	0.609	0.482	0.508
		XXS	-	0.400	1.100	6.40	0.412	0.568	0.598
		-	10S	0.109	2.157	2.64	1.58	0.499	0.420
		SID	40	0.154	2.067	3.65	1.45	0.666	0.561
2	2.375	XS	80	0.218	1.939	5.02	1.28	0.868	0.731
		-	160	0.344	1.687	7.45	0.969	1.16	0.980
		XXS	-	0.436	1.503	9.02	0.769	1.31	1.10
		-	10S	0.120	2.635	3.53	2.36	0.987	0.687
	o c=-	STD	40	0.203	2.469	5.79	2.07	1.53	1.06
2-1/2	2.875	XS	80	0.276	2.323	7.65	1.84	1.92	1.34
		-	160	0.375	2.125	10.0	1.54	2.35	1.64
		XXS	-	0.552	1.771	13.7	1.07	2.87	2.00
3	3.500	-	5S	0.083	3.334	3.03	3.78	1.30	0.744
		-	10S	0.120	3.260	4.33	3.62	1.82	1.04
		STD	40	0.216	3.068	7.57	3.20	3.02	1.72
		XS	80	0.300	2.900	10.2	2.86	3.89	2.23
		-	160	0.438	2.624	14.3	2.34	5.04	2.88

Page 35 Rev. 3/10/06

NPS	OD, in.	ID	Schedule	Wall Thickness, in.	Inside Diameter, in.	Weight of Steel Pipe, Ibm/ft	Weight of Water, Ibm/ft	Moment of Inertia, in4	Section Modulus, in3
		XXS	-	0.600	2.300	18.6	1.80	5.99	3.42
		-	5S	0.083	4.334	3.91	6.39	2.81	1.25
4	4 500	-	10S	0.120	4.260	5.61	6.18	3.96	1.76
4	4.500	STD	40	0.237	4.026	10.8	5.52	7.23	3.21
		XS	80	0.337	3.826	15.0	4.98	9.61	4.27
		-	5S	0.109	6.407	7.58	14.0	11.8	3.58
6	6 625	-	10S	0.134	6.357	9.28	13.8	14.4	4.35
0	0.020	STD	40	0.280	6.065	19.0	12.5	28.1	8.50
		XS	80	0.432	5.761	28.5	11.3	40.5	12.2
		-	5S	0.109	8.407	9.90	24.1	26.4	6.13
Q	9 625	-	10S	0.148	8.329	13.4	23.6	35.4	8.21
0	0.025	STD	40	0.322	7.981	28.5	21.7	72.5	16.8
		XS	80	0.500	7.625	43.3	19.8	105.7	24.5
		-	5S	0.134	10.482	15.2	37.4	63.0	11.7
		-	10S	0.165	10.420	18.6	37.0	76.9	14.3
10	10.750	STD	40	0.365	10.020	40.4	34.2	161	29.9
		XS	-	0.500	9.750	54.7	32.4	212	39.4
		-	80	0.594	9.562	64.4	31.1	245	45.6
		-	5S	0.156	12.438	21.0	52.7	122	19.2
		-	10S	0.180	12.390	24.1	52.2	140	22.0
12	12 750	STD	-	0.375	12.000	49.5	49.0	279	43.8
12	12.750	-	40	0.406	11.938	53.5	48.5	300	47.1
		XS	-	0.500	11.750	65.3	47.0	362	56.7
		-	80	0.688	11.374	88.5	44.0	476	74.6
		-	5S	0.156	13.688	23.0	63.8	163	23.2
		-	10S	0.188	13.624	27.7	63.2	195	27.8
14	14 000	STD	-	0.375	13.250	54.5	59.8	373	53.3
	11.000	-	40	0.438	13.124	63.4	58.6	429	61.4
		XS	-	0.500	13.000	72.0	57.5	484	69.1
		-	80	0.750	12.500	106	53.2	687	98.2
		-	5S	0.165	15.670	27.9	83.6	257	32.2
		-	10S	0.188	15.624	31.7	83.1	292	36.5
16	16.000	STD	-	0.375	15.250	62.5	79.2	562	70.3
		XS	40	0.500	15.000	82.7	76.6	732	91.5
		-	80	0.844	14.312	136	69.7	1157	145
		-	5S	0.165	17.670	31.4	106	368	40.8
		-	10S	0.188	17.624	35.7	106	417	46.4
18	18.000	STD	-	0.375	17.250	70.5	101	807	89.6
		XS	-	0.500	17.000	93.4	98.4	1053	117
		-	40	0.562	16.876	105	96.9	1171	130
		-	80	0.938	16.124	171	88.5	1835	204
		-	5S	0.188	19.624	39.7	131	574	57.4
		-	10S	0.218	19.564	46.0	130	663	66.3
20	20.000	STD	-	0.375	19.250	78.5	126	1113	111
		XS	-	0.500	19.000	104	123	1457	146
		-	40	0.594	18.812	123	120	1706	171
22	22.000	-	5S	0.188	21.624	43.7	159	766	69.7

Page 36 Rev. 3/10/06

NPS	OD, in.	ID	Schedule	Wall Thickness, in.	Inside Diameter, in.	Weight of Steel Pipe, Ibm/ft	Weight of Water, Ibm/ft	Moment of Inertia, in4	Section Modulus, in3
		-	10S	0.218	21.564	50.7	158	885	80.4
		STD	-	0.375	21.250	86.5	154	1490	135
		XS	-	0.500	21.000	115	150	1952	177
		-	5S	0.218	23.564	55.3	189	1152	96.0
		-	10S	0.250	23.500	63.3	188	1315	110
24	24.000	STD	-	0.375	23.250	94.5	184	1942	162
		XS	-	0.500	23.000	125	180	2549	212
		-	40	0.688	22.624	171	174	3426	285
26	26.000	STD	-	0.375	25.250	103	217	2478	191
20	20.000	XS	-	0.500	25.000	136	213	3257	251
20	28 000	STD	-	0.375	27.250	111	253	3105	222
20	20.000	XS	-	0.500	27.000	147	248	4085	292
		-	5S	0.250	29.500	79.3	296	2585	172
30	30.000	-	10S	0.312	29.376	98.8	294	3206	214
50	30.000	STD	-	0.375	29.250	119	291	3829	255
		XS	-	0.500	29.000	157	286	5042	336

#### PIPE DIMENSIONS AND PROPERTIES IN SI METRIC UNITS

					Wall	Inside	Weight of Steel	Weight		Section
					Thickness,	Diameter,	Pipe,	of Water,	Moment of	Modulus,
NPS	DN	OD, mm	ID	Schedule	mm	mm	Kg/m	Kg/m	Inertia, mm4	mm3
1/8	-	10.3	STD	40	1.73	6.83	0.365	0.037	443	86.1
		10.3	XS	80	2.41	5.46	0.469	0.023	506	98.4
1/4	-	13.7	STD	40	2.24	9.25	0.633	0.067	1379	201
		13.7	XS	80	3.02	7.67	0.797	0.046	1567	229
3/8	10	17.1	STD	40	2.31	12.52	0.846	0.123	3035	354
		17.1	XS	80	3.20	10.74	1.10	0.091	3587	418
1/2	15	21.3	-	10S	2.11	17.12	1.00	0.230	5956	558
		21.3	STD	40	2.77	15.80	1.27	0.196	7114	667
		21.3	XS	80	3.73	13.87	1.62	0.151	8357	783
		21.3	-	160	4.78	11.79	1.95	0.109	9225	865
		21.3	XXS	-	7.47	6.40	2.55	0.032	1.009E+04	946
3/4	20	26.7	-	10S	2.11	22.45	1.28	0.396	1.236E+04	927
		26.7	STD	40	2.87	20.93	1.68	0.344	1.542E+04	1156
		26.7	XS	80	3.91	18.85	2.20	0.279	1.864E+04	1398
		26.7	-	160	5.56	15.54	2.90	0.190	2.197E+04	1647
		26.7	XXS	-	7.82	11.02	3.64	0.095	2.411E+04	1808
1	25	33.4	-	10S	2.77	27.86	2.09	0.610	3.151E+04	1887
		33.4	STD	40	3.38	26.64	2.50	0.558	3.635E+04	2177
		33.4	XS	80	4.52	24.36	3.22	0.466	4.381E+04	2624
		33.4	-	160	6.35	20.70	4.24	0.337	5.208E+04	3119
		33.4	XXS	-	9.09	15.21	5.45	0.182	5.846E+04	3501
1-1/4	32	42.2	-	10S	2.77	36.63	2.69	1.05	6.680E+04	3169
		42.2	STD	40	3.56	35.05	3.39	0.965	8.104E+04	3844

Page 37 Rev. 3/10/06

		<b>AD</b>			Wall Thickness,	Inside Diameter,	Weight of Steel Pipe,	Weight of Water,	Moment of	Section Modulus,
NPS	DN	OD, mm		Schedule	mm	mm	Kg/m	Kg/m	Inertia, mm4	mm3
		42.2	XS	80	4.85	32.46	4.46	0.828	1.006E+05	4774
		42.2	-	160	6.35	29.46	5.61	0.682	1.182E+05	5604
		42.2	XXS	-	9.70	22.76	1.11	0.407	1.420E+05	6734
1-1/2	40	48.3	-	10S	2.77	42.72	3.11	1.43	1.027E+05	4258
		48.3	SID	40	3.68	40.89	4.05	1.31	1.290E+05	5346
		48.3	XS	80	5.08	38.10	5.41	1.14	1.628E+05	6748
		48.3	-	160	7.14	33.99	7.24	0.907	2.008E+05	8321
		48.3	XXS	-	10.16	27.94	9.55	0.613	2.364E+05	9795
2	50	60.3	-	10S	2.77	54.79	3.93	2.36	2.078E+05	6889
		60.3	STD	40	3.91	52.50	5.44	2.16	2.771E+05	9187
		60.3	XS	80	5.54	49.25	7.48	1.91	3.613E+05	1.198E+04
		60.3	-	160	8.74	42.85	11.1	1.44	4.846E+05	1.607E+04
		60.3	XXS	-	11.07	38.18	13.5	1.14	5.458E+05	1.810E+04
2-1/2	65	73.0	-	10S	3.05	66.93	5.26	3.52	4.109E+05	1.125E+04
		73.0	STD	40	5.16	62.71	8.63	3.09	6.366E+05	1.744E+04
		73.0	XS	80	7.01	59.00	11.4	2.73	8.009E+05	2.194E+04
		73.0	-	160	9.53	53.98	14.9	2.29	9.793E+05	2.682E+04
		73.0	XXS	-	14.02	44.98	20.4	1.59	1.195E+06	3.273E+04
3	80	88.9	-	5S	2.11	84.68	4.51	5.63	5.416E+05	1.218E+04
		88.9	-	10S	3.05	82.80	6.45	5.39	7.584E+05	1.706E+04
		88.9	STD	40	5.49	77.93	11.3	4.77	1.256E+06	2.825E+04
		88.9	XS	80	7.62	73.66	15.3	4.26	1.621E+06	3.647E+04
		88.9	-	160	11.13	66.65	21.3	3.49	2.097E+06	4.719E+04
		88.9	XXS	-	15.24	58.42	27.7	2.68	2.494E+06	5.611E+04
4	100	114.3	-	5S	2.11	110.08	5.83	9.52	1.170E+06	2.046E+04
		114.3	-	10S	3.05	108.20	8.36	9.20	1.649E+06	2.886E+04
		114.3	STD	40	6.02	102.26	16.1	8.21	3.010E+06	5.268E+04
		114.3	XS	80	8.56	97.18	22.3	7.42	4.000E+06	6.999E+04
6	150	168.3	-	5S	2.77	162.74	11.3	20.8	4.930E+06	5.860E+04
		168.3	-	10S	3.40	161.47	13.8	20.5	5.993E+06	7.122E+04
		168.3	STD	40	7.11	154.05	28.3	18.6	1.171E+07	1.392E+05
		168.3	XS	80	10.97	146.33	42.6	16.8	1.685E+07	2.003E+05
8	200	219.1	-	5S	2.77	213.54	14.8	35.8	1.101E+07	1.005E+05
		219.1	-	10S	3.76	211.56	20.0	35.2	1.474E+07	1.346E+05
		219.1	STD	40	8.18	202.72	42.5	32.3	3.017E+07	2.755E+05
		219.1	XS	80	12.70	193.68	64.6	29.5	4.400E+07	4.017E+05
10	250	273.1	-	5S	3.40	266.24	22.6	55.7	2.621E+07	1.920E+05
		273.1	-	10S	4.19	264.67	27.8	55.0	3.199E+07	2.343E+05
		273.1	STD	40	9.27	254.51	60.3	50.9	6.690E+07	4.900E+05
		273.1	XS	-	12.70	247.65	81.5	48.2	8.822E+07	6.462E+05
		273.1	-	80	15.09	242.87	96.0	46.3	1.021E+08	7.475E+05
12	300	323.9	-	58	3.96	315.93	31.3	78.4	5.094F+07	3.146E+05
	200	323.9	-	105	4.57	314 71	36.0	77.8	5.845F+07	3.610F+05
		323.9	STD	-	9.53	304 80	73.8	73.0	1.163F+08	7.180F+05
		323.9	-	40	10.31	303 23	797	72.2	1.250F+08	7.717E+05
		323.9	XS	-	12.70	298.45	97.5	70.0	1.505E+08	9.294E+05
		323.9	-	80	17.48	288.90	132	65.6	1.980E+08	1.223E+06

Page 38 Rev. 3/10/06

NPS	DN	OD. mm	ID	Schedule	Wall Thickness, mm	Inside Diameter, mm	Weight of Steel Pipe, Ka/m	Weight of Water, Kg/m	Moment of Inertia. mm4	Section Modulus, mm3
14	350	355.6	-	5S	3.96	347.68	34.4	94.9	6.766E+07	3.806E+05
		355.6	-	10S	4.78	346.05	41.3	94.1	8.098E+07	4.555E+05
		355.6	STD	-	9.53	336.55	81.3	89.0	1.552E+08	8.726E+05
		355.6	-	40	11.13	333.35	94.5	87.3	1.788E+08	1.005E+06
		355.6	XS	-	12.70	330.20	107	85.6	2.014E+08	1.132E+06
		355.6	-	80	19.05	317.50	158	79.2	2.861E+08	1.609E+06
16	400	406.4	-	5S	4.19	398.02	41.6	124	1.071E+08	5.271E+05
		406.4	-	10S	4.78	396.85	47.3	124	1.215E+08	5.979E+05
		406.4	STD	-	9.53	387.35	93.2	118	2.340E+08	1.151E+06
		406.4	XS	40	12.70	381.00	123	114	3.047E+08	1.499E+06
		406.4	-	80	21.44	363.52	204	104	4.818E+08	2.371E+06
18	450	457	-	5S	4.19	448.82	46.8	158	1.530E+08	6.694E+05
		457	-	10S	4.78	447.65	53.3	157	1.737E+08	7.597E+05
		457	STD	-	9.53	438.15	105	151	3.357E+08	1.469E+06
		457	XS	-	12.70	431.80	139	146	4.384E+08	1.918E+06
		457	-	40	14.27	428.65	156	144	4.876E+08	2.133E+06
		457	-	80	23.83	409.55	255	132	7.638E+08	3.341E+06
20	500	508	-	5S	4.78	498.45	59.3	195	2.390E+08	9.409E+05
		508	1	10S	5.54	496.93	68.6	194	2.759E+08	1.086E+06
		508	STD	-	9.53	488.95	117	188	4.635E+08	1.825E+06
		508	XS	-	12.70	482.60	155	183	6.064E+08	2.387E+06
		508	-	40	15.09	477.82	183	179	7.102E+08	2.796E+06
22	550	559	-	5S	4.78	549.25	65.2	237	3.189E+08	1.141E+06
		559	-	10S	5.54	547.73	75.6	236	3.683E+08	1.318E+06
		559	STD	-	9.53	539.75	129	229	6.200E+08	2.219E+06
		559	XS	-	12.70	533.40	171	223	8.127E+08	2.909E+06
24	600	610	-	5S	5.54	598.53	82.5	281	4.793E+08	1.573E+06
		610	-	10S	6.35	596.90	94.5	280	5.475E+08	1.796E+06
		610	STD	-	9.53	590.55	141	274	8.084E+08	2.652E+06
		610	XS	-	12.70	584.20	187	268	1.061E+09	3.481E+06
		610	-	40	17.48	574.65	255	259	1.426E+09	4.678E+06
26	650	660	STD	-	9.53	641.35	153	323	1.032E+09	3.124E+06
		660	XS	-	12.70	635.00	203	317	1.356E+09	4.106E+06
28	700	711	STD	-	9.53	692.15	165	376	1.292E+09	3.635E+06
		711	XS	-	12.70	685.80	219	369	1.700E+09	4.781E+06
30	750	762	-	5S	6.35	749.30	118	441	1.076E+09	2.824E+06
		762	-	10S	7.92	746.15	147	437	1.335E+09	3.503E+06
		762	STD	-	9.53	742.95	177	434	1.594E+09	4.184E+06
		762	XS	-	12.70	736.60	235	426	2.099E+09	5.508E+06

#### PIPING MATERIAL SPECIFICATION WORKSHOP

Develop a piping material specification for styrene monomer.

Design conditions are from Problems 1 and 2 on page 25.

- Condition 1: _____ psi (bar) at _____ °F (' Condition 2: 50 psi (3.5 bar) at 735°F (390°C) °F (°C)
- Pipe wall thicknesses are as determined from calculations on page 32.

Pressure Class 300

Item	NPS Range	Sch/Rating	Description
Pipe	3/4	160	Seamless carbon steel pipe, ASTM A106 Gr B, ASTM A53 Type S Gr B, or API 5L Gr B
	1 – 2	xs	Seamless carbon steel pipe, ASTM A106 Gr B, ASTM A53 Type S Gr B, or API 5L Gr B
	3 - 12	STD	Seamless carbon steel pipe, ASTM A106 Gr B, ASTM A53 Type S Gr B, or API 5L Gr B
Nipples	³ ⁄4 - 1 ¹ ⁄2	160	Seamless carbon steel pipe, ASTM A106 Gr B, ASTM A53 Type S Gr B, or API 5L Gr B
Fittings	3/4	6000	Forged carbon steel, ASTM A105, ASME B16.11, socket weld 90 EL, 45 EL, TEE, PLUG, COUPLING, CAP, AND REDUCER. UNIONS are prohibited.
	1 - 1 1⁄2	3000	Forged carbon steel, ASTM A105, ASME B16.11, socket weld 90 EL, 45 EL, TEE, PLUG, COUPLING, CAP, AND REDUCER. UNIONS are prohibited.
	2 – 12	Match pipe	Wrought carbon steel, ASTM A234, ASME B16.9, buttweld 90 LR EL, 45 LR EL, TEE, CAP AND REDUCER
Flanges	³ ⁄4 <b>- 1</b> ¹ ⁄2	300	Forged carbon steel, ASTM A105, ASME B16.5 socket welding raised face
	2 - 12	300	Forged carbon steel, ASTM A105, ASME B16.5 welding neck raised face, bore to match pipe
Gaskets	³ ⁄4 - 12	300	Spiral wound ASME B16.20 with 304 SS windings (yellow centering ring), flexible graphite filler (gray stripe) and standard inner ring NPS 10 and larger
Bolting	³ ⁄ ₄ - 12	-	Low alloy steel bolting, ASTM A193 Gr B7 stud with 2 ASTM A194 Gr 2H nuts

What should be used for branch construction? [Note that the answer will different for different size combinations.]

#### Sample from Process Industry Practices (PIP) PN03CS1S01



E Reducing Tee

P Branch Weld w/ Reinforcing Pad (Pad thickness equals run pipe thickness. Pad width equals 1/2 branch OD.)

- S Sockolet
- T Tee
- W Weldolet (Note 05)

Note that when branch connection fittings (Weldolet) are specified, the requirements for these components should be described as well, e.g., "Forged carbon steel ASTM A105, MSS SP-97". When ordering buttweld branch connection fittings, both the header and branch wall thicknesses should be specified.

Sample Notes:

NOTES:

01 The pipe and fittings are adequate for the full flange rating.

02 All buttwelding component thicknesses shall match pipe thicknesses.

03 Threaded joints are permitted only at outlet of vent and drain valves, at hydrostatic connections, at outlet of instrument take-off valves, and to match equipment.

05 Integrally reinforced branch connections are permitted outside the sizes shown in the branch connection table. 13 Welding neck flanges shall be used against buttweld fittings.

19 Sch 160 pipe and pipe nipples shall be used for threaded connections for sizes NPS 1/2 – 1-1/2.

26 To be used only when indicated on the P&ID.

27 Pipe and pipe components thicker than 1/2-inch may require impact tested materials when the minimum design metal temperature is below 100F (38C) (See ASME B31.3, paragraph 323.2.2).

136 Sch XS pipe shall be used for threaded connections for NPS 2.

## MEAN THERMAL EXPANSION COEFFICIENT BETWEEN 70°F AND THE INDICATED TEMPERATURE (1 x $10^{-6}$ /°F)

Temp,		Stainless	Copper & its			
°F	Carbon Steels	Steels	Alloys	Aluminum	Ni-Fe-Cr	Ni-Cr-Fe
-300	5.07	8.21	7.94	10.04		
-250	5.21	8.34	8.26	10.33		
-200	5.35	8.47	8.51	10.61		
-150	5.50	8.54	8.72	10.90		
-100	5.65	8.66	8.89	11.25		
-50	5.80	8.90	9.04	11.60		
0	5.90	8.98	9.17	11.86		
50	6.01	9.07	9.28	12.12		
100	6.13	9.16	9.39	12.39		7.20
150	6.25	9.25	9.48	12.67		7.30
200	6.38	9.34	9.56	12.95	7.90	7.40
250	6.49	9.41	9.64	13.12	8.01	7.48
300	6.60	9.47	9.71	13.28	8.35	7.56
350	6.71	9.53	9.78	13.44	8.57	7.63
400	6.82	9.59	9.84	13.60	8.80	7.70
450	6.92	9.65	9.89	13.75	8.85	7.75
500	7.02	9.70	9.94	13.90	8.90	7.80
550	7.12	9.76	9.99	14.05	8.95	7.85
600	7.23	9.82	10.04	14.02	9.00	7.90
650	7.33	9.87			9.05	7.95
700	7.44	9.92			9.10	8.00
750	7.54	9.99			9.15	8.05
800	7.65	10.05			9.20	8.10
850	7.75	10.11			9.25	
900	7.84	10.16			9.30	
950	7.91	10.23			9.35	
1000	7.97	10.29			9.40	
1050	8.05	10.34			9.45	
1100	8.12	10.39			9.50	
1150	8.16	10.44			9.55	
1200	8.19	10.48			9.60	
1250	8.24	10.51			9.68	
1300	8.28	10.54			9.75	
1350	8.32	10.57			9.83	
1400	8.36	10.60			9.90	
1450		10.68			9.98	
1500		10.77			10.05	

#### TOTAL THERMAL EXPANSION BETWEEN 70°F AND THE INDICATED TEMPERATURE (IN/100 FT)

Temp,			Copper & its			
°F	Carbon Steels	Stainless Steels	Alloys	Aluminum	Ni-Fe-Cr	Ni-Cr-Fe
-300	-2.25	-3.65	-3.53	-4.46		
-250	-2.00	-3.20	-3.17	-3.97		
-200	-1.73	-2.74	-2.76	-3.44		
-150	-1.45	-2.25	-2.30	-2.88		
-100	-1.15	-1.77	-1.81	-2.30		
-50	-0.84	-1.28	-1.30	-1.67		
0	-0.50	-0.75	-0.77	-1.00		
50	-0.14	-0.22	-0.22	-0.29		
100	0.22	0.33	0.34	0.45		0.26
150	0.60	0.89	0.91	1.22		0.70
200	1.00	1.46	1.49	2.02	1.23	1.15
250	1.40	2.03	2.08	2.83	1.73	1.62
300	1.82	2.61	2.68	3.67	2.30	2.09
350	2.25	3.20	3.29	4.52	2.88	2.56
400	2.70	3.80	3.90	5.39	3.48	3.05
450	3.16	4.40	4.51	6.27	4.04	3.53
500	3.62	5.01	5.13	7.17	4.59	4.02
550	4.10	5.62	5.75	8.09	5.16	4.52
600	4.60	6.25	6.39	8.92	5.72	5.02
650	5.10	6.87			6.30	5.53
700	5.62	7.50			6.88	6.05
750	6.15	8.15			7.47	6.57
800	6.70	8.80			8.06	7.10
850	7.25	9.46			8.66	
900	7.81	10.12			9.26	
950	8.35	10.80			9.87	
1000	8.89	11.48			10.49	
1050	9.47	12.16			11.11	
1100	10.04	12.84			11.74	
1150	10.58	13.53			12.38	
1200	11.11	14.21			13.02	
1250	11.67	14.88			13.71	
1300	12.22	15.56			14.39	
1350	12.78	16.24			15.10	
1400	13.34	16.92			15.80	
1450		17.69			16.53	
1500		18.48			17.25	

## MEAN THERMAL EXPANSION COEFFICIENT BETWEEN 20°C AND THE INDICATED TEMPERATURE (1 x $10^{-6}$ /°C)

Temp,		Stainless	Copper & its			
°C	Carbon Steels	Steels	Alloys	Aluminum	Ni-Fe-Cr	Ni-Cr-Fe
-175	2.86	4.58	4.36	5.62		
-150	2.89	4.66	4.63	5.78		
-125	2.97	4.71	4.74	5.89		
-100	3.06	4.78	4.84	6.06		
-75	3.14	4.86	4.94	6.25		
-50	3.22	4.94	5.02	6.44		
-25	3.25	4.98	5.08	6.56		
0	3.31	5.02	5.14	6.67		
25	3.37	5.06	5.18	6.80		3.96
50	3.77	5.11	5.24	6.96		4.03
75	3.51	5.15	5.28	7.06		4.07
100	3.56	5.19	5.32	7.22	4.42	4.12
125	3.61	5.23	5.36	7.29	4.51	4.16
150	3.67	5.26	5.39	7.38	4.64	4.20
175	3.73	5.29	5.44	7.47	4.76	4.24
200	3.79	5.32	5.46	7.54	4.88	4.28
225	3.83	5.35	5.48	7.62	4.91	4.29
250	3.88	5.38	5.51	7.69	4.93	4.32
275	3.93	5.41	5.54	7.77	4.96	4.34
300	3.98	5.44	5.61	7.85	4.98	4.38
325	4.03	5.46			5.01	4.39
350	4.09	5.49			5.03	4.42
375	4.14	5.51			5.06	4.44
400	4.19	5.55			5.08	4.47
425	4.25	5.58			5.11	4.50
450	4.3	5.61			5.13	
475	4.34	5.63			5.16	
500	4.38	5.67			5.18	
525	4.41	5.70			5.21	
550	4.45	5.73			5.23	
575	4.48	5.75			5.26	
600	4.52	5.78			5.28	
625	4.53	5.80			5.31	
650	4.55	5.82			5.33	
675	4.58	5.84			5.38	
700	4.60	5.86			5.41	
725	4.62	5.87			5.45	
750	4.63	5.88			5.48	
775		5.91			5.52	
800		5.96			5.56	

#### TOTAL THERMAL EXPANSION BETWEEN 20°C AND THE INDICATED TEMPERATURE (mm/m)

Temp.			Copper & its			
°C	Carbon Steels	Stainless Steels	Alloys	Aluminum	Ni-Fe-Cr	Ni-Cr-Fe
-175	-0.56	-0.89	-0.85	-1.10		
-150	-0.49	-0.79	-0.79	-0.98		
-125	-0.43	-0.68	-0.69	-0.85		
-100	-0.37	-0.57	-0.58	-0.73		
-75	-0.30	-0.46	-0.47	-0.59		
-50	-0.23	-0.35	-0.35	-0.45		
-25	-0.15	-0.22	-0.23	-0.30		
0	-0.07	-0.10	-0.10	-0.13		
25	0.02	0.03	0.03	0.03		
50	0.10	0.15	0.16	0.21		
75	0.19	0.28	0.29	0.39		
100	0.28	0.42	0.43	0.58	0.35	0.33
125	0.38	0.55	0.56	0.77	0.47	0.44
150	0.48	0.68	0.70	0.96	0.60	0.55
175	0.58	0.82	0.84	1.16	0.74	0.66
200	0.68	0.96	0.98	1.36	0.88	0.77
225	0.79	1.10	1.12	1.56	1.01	0.88
250	0.89	1.24	1.27	1.77	1.13	0.99
275	1.00	1.38	1.41	1.98	1.26	1.11
300	1.11	1.52	1.57	2.20	1.39	1.23
325	1.23	1.67			1.53	1.34
350	1.35	1.81			1.66	1.46
375	1.47	1.96			1.80	1.58
400	1.59	2.11			1.93	1.70
425	1.72	2.26			2.07	1.82
450	1.85	2.41			2.21	
475	1.97	2.56			2.35	
500	2.10	2.72			2.49	
525	2.23	2.88			2.63	
550	2.36	3.04			2.77	
575	2.49	3.19			2.92	
600	2.62	3.35			3.06	
625	2.74	3.51			3.21	
650	2.87	3.67			3.36	
675	3.00	3.83			3.52	
700	3.13	3.98			3.68	
725	3.26	4.14			3.84	
750	3.38	4.29			4.00	
775		4.46			4.17	
800		4.65			4.34	

#### SPRING HANGAR LOAD TABLE FROM ANVIL INTERNATIONAL, INC. (Part 1)

#### Spring Hanger Size and Series Selection

#### How to use hanger selection table:

In order to choose a proper size hanger, it is necessary to know the actual load which the spring is to support and the amount and direction of the pipe line movement from the cold to the hot position.

Find the actual load of the pipe in the load table. As it is desirable to support the actual weight of the pipe when the line is hot, the actual load is the hot load. To determine the cold load, read the spring scale, up or down, for the amount of expected movement.

The chart must be read opposite from the direction of the pipe's movement. The load arrived at is the cold load.

If the cold load falls outside of the working load range of the hanger selected, relocate the actual or hot load in the adjacent column and find the cold load. When the hot and cold loads are both within the working range of a hanger, the size number of that hanger will be found at the top of the column.

<table-container>Working Barge (i) subset with two problem in the symbol of the symbol o</table-container>	Load Table (Ibs) for Selection of Hanger Size (sizes 10 through 22 on next page)																			
<table-container>colscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolscolsc</table-container>		Work	ing Rang	e (in)		Hanger size														
colscolscolscolscolscolscolscolscols <th co<="" td=""><td>8</td><td>Shaded Ro</td><td>ws Show</td><td>Overtrave</td><td>l</td><td>R-269</td><td>2 Only</td><td colspan="12">Fig. 82 Fig. B.268 Fig. 98 Triple &amp; Augdruple Spring</td></th>	<td>8</td> <td>Shaded Ro</td> <td>ws Show</td> <td>Overtrave</td> <td>l</td> <td>R-269</td> <td>2 Only</td> <td colspan="12">Fig. 82 Fig. B.268 Fig. 98 Triple &amp; Augdruple Spring</td>	8	Shaded Ro	ws Show	Overtrave	l	R-269	2 Only	Fig. 82 Fig. B.268 Fig. 98 Triple & Augdruple Spring											
Ound.Trip9868682800000012345678911171943638110014719728336046060011121668881101471972833804606806710111216014871901181502112843735066750000112852769812717022830546056375011230547910113117623631542056375011231506711011311762363154006007501112850671101131176236315406563750111123165081610018018618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618618		F	igure No	).		0-200	5 Only	rig. oz, rig. o-zoo, rig. ao, nipie a quadrupie opinig												
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""> <th1< th=""></th1<></th1<></th1<>	Quad.	Triple	98	B-268	82	000	00	0	1	2	3	4	5	6	7	8	9			
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1</th1<>						7	19	43	63	81	105	141	189	252	336	450	600			
1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2 <th1 2<="" th=""> <th1 2<="" th=""> <th1 2<="" th=""></th1></th1></th1>	2	11/2	1	1/5	1/4	7	20	44	66	84	109	147	197	263	350	469	625			
Image: constraint of the state of the sta	-	172	•	72	74	8	22	46	68	88	114	153	206	273	364	488	650			
0       0       0       0       0       20       20       20       20       70       90       123       165       221       294       392       525       700         1       1       28       52       76       98       127       170       228       305       406       544       750         2       1½       1       ½       31       56       81       105       136       182       244       326       434       561       775         2       1½       1       ½       31       56       81       105       136       182       244       326       434       600       800         4       3       2       11       31       56       87       111       144       94       200       37       462       619       825         4       3       2       1       16       40       63       92       118       153       206       276       368       490       656       875         4       3       1       14       34       67       97       125       166       232       939       951       51						9	24	48	71	91	118	159	213	284	378	506	675			
2         11/2         1         11         28         52         76         98         127         170         228         305         406         544         725           2         11/2         30         54         79         101         131         176         236         315         420         563         750           2         11         56         81         106         180         182         224         326         448         600         800         750           4         3         55         58         84         108         180         120         347         462         619         825           4         3         6         49         15         149         150         120         158         206         266         357         476         638         850           4         3         7         14         145         69         100         128         166         223         299         399         532         731         950           4         4         2         7         140         73         105         135         150         170         1025<	0	0	0	0	0	10	26	50	74	95	123	165	221	294	392	525	700			
2         11/2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th="">         1         <th1< th=""></th1<></th1<></th1<>						11	28	52	76	98	127	170	228	305	406	544	725			
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111						12	30	54	79	101	131	176	236	315	420	563	750			
11111345884108140188252364486008004114194200347462619825435598711114419420034746261982543211536392115118153200276368400650504321416595122158212284378504675900151741659712516221729138951869492516217219399532713950900100128166223299399532713950641231124973105135175235315420560700100771001321711293074115487319751001007355761101421842473314415881861008642138175235315420660100165140188253330452600861864218613114518414918						12	31	56	81	105	136	182	244	326	434	581	775			
4         3         5         5         87         111         144         194         260         347         462         619         825           4         3         2         1         14         35         59         87         111         144         194         200         268         337         476         638         850           4         3         2         115         149         200         268         377         476         638         850           6         412         2         17         41         65         95         122         162         217         201         389         518         690         975           6         412         3         112         41         102         132         171         202         307         410         560         750         100         128         166         223         299         399         532         713         950           6         412         34         132         131         142         144         247         331         441         580         880         100           71         72         5	2	11/2	1	1/2	1⁄4	14	34	58	84	108	140	188	252	336	448	600	800			
4         3         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1						14	35	59	87	111	144	194	260	347	462	619	825			
43211116391111022110210000641/2341111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>15</td><td>38</td><td>61</td><td>89</td><td>115</td><td>149</td><td>200</td><td>268</td><td>357</td><td>476</td><td>638</td><td>850</td></t<>						15	38	61	89	115	149	200	268	357	476	638	850			
4         3         2         1         1/2         17         41         65         95         122         158         212         284         378         504         675         900           18         43         67         97         125         162         217         291         389         518         604         925           6         4½         3         1½         94         50         100         128         166         223         299         399         532         713         950           6         4½         3         1½         41         69         100         128         166         223         299         399         532         713         950           6         4½         3         112         49         73         105         135         175         235         315         420         560         760         1,000           21         50         76         110         142         184         241         331         441         588         760         1,000           7         2         58         82         118         152         197						16	40	63	92	118	153	206	276	368	490	656	875			
6         41/2         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th="">         1         <th1< th=""></th1<></th1<></th1<>	4	3	2	1	1/2	17	41	65	95	122	158	212	284	378	504	675	900			
Alve a series of a series o						18	43	67	97	125	162	217	291	389	518	694	925			
6     4½     3     1½     2     47     71     102     132     171     229     307     410     546     731     975       6     4½     3     1½     4     49     73     105     135     175     235     315     420     560     750     1,000       7     10     105     135     175     235     315     420     560     750     1,000       7     10     10     142     184     247     331     441     588     788     1,050       7     10     142     184     247     331     441     588     788     1,050       7     2     55     78     113     145     188     253     339     452     602     806     1,075       7     2     55     78     118     152     197     264     354     473     630     844     1,125       10     71/2     5     215     58     82     118     152     197     264     354     473     630     841     1,125       10     71/2     5     212     216     162     165     214     288     364 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>19</td> <td>45</td> <td>69</td> <td>100</td> <td>128</td> <td>166</td> <td>223</td> <td>299</td> <td>399</td> <td>532</td> <td>713</td> <td>950</td>						19	45	69	100	128	166	223	299	399	532	713	950			
6     4½     3     1½     ¾     21     49     73     105     135     175     235     315     420     560     750     1,000       21     50     74     108     138     179     241     323     431     574     769     1,025       22     53     76     110     142     184     247     331     441     588     788     1,050       8     6     4     2     78     113     145     188     253     339     452     602     806     1,075       10     7½     5     7     76     118     152     197     264     354     473     630     844     1,125       10     7½     5     2½     114     28     64     123     159     206     276     370     494     658     881     1,175       10     7½     5     2½     114     28     64     88     126     162     210     282     376     504     672     900     1,205       10     7½     5     2½     114     28     64     88     126     162     210     282     376     504						20	47	71	102	132	171	229	307	410	546	731	975			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	41/2	3	11/2	3/4	21	49	73	105	135	175	235	315	420	560	750	1,000			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						21	50	74	108	138	179	241	323	431	574	769	1,025			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						22	53	76	110	142	184	247	331	441	588	788	1,050			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						23	55	78	113	145	188	253	339	452	602	806	1,075			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	6	4	2	1	24	56	80	116	149	193	258	347	462	616	825	1,100			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						25	58	82	118	152	197	264	354	473	630	844	1,125			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						26	60	84	121	155	201	270	362	483	644	863	1,150			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						27	62	86	123	159	206	276	370	494	658	881	1,175			
$ 2 \  \  \  \  \  \  \  \  \  \  \  \  \$	10	71⁄2	5	21/2	11⁄4	28	64	88	126	162	210	282	378	504	672	900	1,200			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						28	66	89	129	165	214	288	386	515	686	919	1,225			
Z         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2         1/2 <th 2<="" th=""> <th 2<="" th=""> <th 2<="" th=""></th></th></th>	<th 2<="" th=""> <th 2<="" th=""></th></th>	<th 2<="" th=""></th>		<u>_</u>	414	4	16	14	29	68	91	131	169	219	294	394	525	700	938	1,250
Mark         Mark <th< td=""><td>2</td><td>172</td><td>1</td><td>1/2</td><td>'⁄4</td><td>30</td><td>70</td><td>93</td><td>134</td><td>172</td><td>223</td><td>300</td><td>402</td><td>536</td><td>714</td><td>956</td><td>1,275</td></th<>	2	172	1	1/2	'⁄4	30	70	93	134	172	223	300	402	536	714	956	1,275			
B-268         7         15         15         21         27         35         47         63         84         112         150         200           Triple         -         -         7         10         13         17         23         31         42         56         75         100           Triple         -         -         5         7         9         12         16         21         28         37         50         67						31	72	95	137	176	228	306	410	546	728	975	1,300			
82         -         -         30         42         54         70         94         126         168         224         300         400           B-268         7         15         15         21         27         35         47         63         84         112         150         200           98         -         -         7         10         13         17         23         31         42         56         75         100           Triple         -         -         5         7         9         12         16         21         28         37         50         67									1	Sp	ring Ra	ate (lbs	/ln)							
B-268         7         15         15         21         27         35         47         63         84         112         150         200           98         -         -         7         10         13         17         23         31         42         56         75         100           Triple         -         5         7         9         12         16         21         28         37         50         67					82	-	-	30	42	54	70	94	126	168	224	300	400			
98         -         7         10         13         17         23         31         42         56         75         100           Triple         -         5         7         9         12         16         21         28         37         50         67		R.269					15	15	21	27	35	47	63	84	112	150	200			
Triple         -         5         7         9         12         16         21         28         37         50         67					98	-	-	7	10	13	17	23	31	42	56	75	100			
					Trinlo	-	-	5	7	9	12	16	21	28	37	50	67			
Quadruple 4 5 7 9 12 16 21 28 38 50					Ouadrunle	_	_	4	5	7	9	12	16	21	28	38	50			
Note: General rule for series selection use Fig. 82 for up to 1% of movement up to 1" use Fig. 8-268, up to 2" use Fig. 98, up to 3" use a Triple, up to 4"	Note: Gen	eral rule for	series sele	ection use F	ia. 82 for ur	to 1/2' o	f movem	ent up to	1" use Fir	1 B-268	up to 2'	ise Fig. 9	8. up to 3	use a Tr	iple, up to	o 4"				

use a Quadruple. Double check to assure desired variability is achieved.

#### SPRING HANGAR LOAD TABLE FROM ANVIL INTERNATIONAL, INC. (Part 2)

#### Spring Hanger Size and Series Selection

#### How to use hanger selection table (cont.):

Should it be impossible to select a hanger in a particular series such that both loads occur within the working range, consideration should be given to a variable spring hanger with a wider working range or a constant support hanger.

The cold load is calculated by adding (for up movement) or subtracting (for down movement) the product of spring rate times movement to or from the hot load.

#### Cold load = (hot load) ± (movement) x (spring rate)

A key criteria in selecting the size and series of a variable spring is a factor known as variability. This is a measurement of the percentage change in supporting force between the hot and cold positions of a spring and is calculated from the formula:

Variability = (Movement) x (Spring Rate) / (Hot Load)

If an allowable variability is not specified, good practice would be to use 25% as recommended by MSS-SP-58.

Load Table (Ibs) for Selection of Hanger Size (Cont. from previous page)																			
	Hanger size												Working Range (in) Shaded Rows Show Overtravel						
			Fig. 82,	Fig. B-	268, Fig	. 98, Tri	iple & Q	uadrupl	e Spring				Figure No.						
10	11	12	13	14	15	16	17	18	19	20	21	22	82	B-268	98	Triple	Quad		
780	1,020	1,350	1,800	2,400	3,240	4,500	6,000	7,990	10,610	14,100	18,750	25,005							
813	1,063	1,406	1,875	2,500	3,375	4,688	6,250	8,322	11,053	14,588	19,531	26,047	14	14		416	2		
845	1,105	1,463	1,950	2,600	3,510	4,875	6,500	8,655	11,495	15,275	20,313	27,089	⁹ 4	1/2	•	1 /2	2		
878	1,148	1,519	2,025	2,700	3,645	5,063	6,750	8,987	11,938	15,863	21,094	28,131	Ţ						
910	1,190	1,575	2,100	2,800	3,780	5,250	7,000	9,320	12,380	16,450	21,875	29,173	0	0	0	0	0		
943	1,233	1,631	2,175	2,900	3,915	5,438	7,250	9,652	12,823	17,038	22,656	30,215	Ť						
975	1,275	1,688	2,250	3,000	4,050	5,625	7,500	9,985	13,265	17,625	23,438	31,256	†						
1,008	1,318	1,744	2,325	3,100	4,185	5,813	7,750	10,317	13,708	18,213	24,219	32,298	1						
1,040	1,360	1,800	2,400	3,200	4,320	6,000	8,000	10,650	14,150	18,800	25,000	33,340	1⁄4	1/2	1	11/2	2		
1,073	1,403	1,856	2,475	3,300	4,455	6,188	8,250	10,982	14,592	19,388	25,781	34,382	†						
1,105	1,445	1,913	2,550	3,400	4,590	6,375	8,500	11,315	15,035	19,975	26,563	35,424	1						
1,138	1,488	1,969	2,625	3,500	4,725	6,563	8,750	11,647	15,477	20,563	27,344	36,466	†						
1,170	1,530	2,025	2,700	3,600	4,860	6,750	9,000	11,980	15,920	21,150	28,125	37,508	1/2	1	2	3	4		
1,203	1,573	2,081	2,775	3,700	4,995	6,938	9,250	12,312	16,362	21,738	28,906	38,549	1						
1,235	1,615	2,138	2,850	3,800	5,130	7,125	9,500	12,645	16,805	22,325	29,688	39,591	†						
1,268	1,658	2,194	2,925	3,900	5,265	7,313	9,750	12,977	17,247	22,913	30,469	40,633	†						
1,300	1,700	2,250	3,000	4,000	5,400	7,500	10,000	13,310	17,690	23,500	31,250	41,675	3⁄4	11/2	3	41/2	6		
1,333	1,743	2,306	3,075	4,100	5,535	7,688	10,250	13,642	18,132	24,088	32,031	42,717	1						
1,365	1,785	2,363	3,150	4,200	5,670	7,875	10,500	13,975	18,575	24,675	32,813	43,759	1						
1,398	1,828	2,419	3,225	4,300	5,805	8,063	10,750	14,307	19,017	25,263	33,594	44,801	Ť						
1,430	1,870	2,475	3,300	4,400	5,940	8,250	11,000	14,640	19,460	25,850	34,375	45,843	1	2	4	6	8		
1,463	1,913	2,531	3,375	4,500	6,075	8,438	11,250	14,972	19,902	26,438	35,156	46,885	†						
1,495	1,955	2,588	3,450	4,600	6,210	8,625	11,500	15,305	20,345	27,025	35,938	47,926	1						
1,528	1,998	2,644	3,525	4,700	6,345	8,813	11,750	15,637	20,787	27,613	36,719	48,968	1						
1,560	2,040	2,700	3,600	4,800	6,480	9,000	12,000	15,970	21,230	28,200	37,500	50,010	11⁄4	21/2	5	71/2	10		
1,593	2,083	2,756	3,675	4,900	6,615	9,188	12,250	16,302	21,672	28,788	38,281	51,052							
1,625	2,125	2,813	3,750	5,000	6,750	9,375	12,500	16,635	22,115	29,375	39,063	52,094	1	47			~		
1,658	2,168	2,869	3,825	5,100	6,885	9,563	12,750	16,967	22,557	29,963	39,844	53,136	- 1/4	1/2	1	1 1 1 / 2	z		
1,690	2,210	2,925	3,900	5,200	7,020	9,750	13,000	17,300	23,000	30,550	40,625	54,178	†						
					Spring	Rate	(lbs/ln)												
520	680	900	1,200	1,600	2,160	3,000	4,000	5,320	7,080	9,400	12,500	16,670	82						
260	340	450	600	800	1,080	1,500	2,000	2,660	3,540	4,700	6,250	8,335	B-268	L					
130	170	225	300	400	540	750	1,000	1,330	1,770	2,350	3,125	4,167	98						
87	113	150	200	267	360	500	667	887	1,180	1,567	2,083	2,778	Triple			-			
65	85	113	150	200	270	375	500	665	885	1,175	1,563	2,084	Quadrup	le		1	1		
Note: Co	nom rub	for early	ne colocti	on ueo Eiz	1 82 for 1	in to 16	of mover	ant un tr	1º ueo E	a B-268	un to 2	ueo Eig	08 up to	2" ueo o Tr	rinla, un	to 4"			

Note: General rule for series selection use Fig. 82 for up to 1/2 of movement up to 1 use Fig. B-268, up to 2 use Fig. 98, up to 3" use a Triple-, up to 4" use a Quadruple. Double check to assure desired variability is achieved.

#### Fig. 82, Fig. B-268, Fig. 98, Triple Spring, and Quadruple Spring Fig. C-82, Fig. C-268, Fig. C-98, Triple-CR, and Quadruple-CR Spring (Corrosion Resistant)

#### Design features:

- Precompression.
  - Precompressing the spring into the hanger casing provides the following advantages:
  - (1) Saves up to 50% in headroom by reducing the length of the hanger.
  - (2) Reduces the installed height of the overall hanger assembly.
  - (3) Prevents the spring supporting force from exceeding the normal safe limits of variations.
  - (4) Saves valuable erection time because spring is precompressed close to ¹/2' of the working range.
- Calibration: all Anvil Variable Spring Hangers and supports are calibrated for accurate loading conditions.
- Load indicator is clearly seen in the slot, simplifying reading of the scale plate. Load is read from bottom of indicator.
- · Cold set at the factory upon request.
- Spring and casing are fabricated of steel and are rugged and compact.
- Piston cap serves as a centering device or guide maintaining spring alignment.
- · Casing protects the spring from damage and weather conditions.

Standard Finish: Painted with semi-gloss primer.

#### Corrosion Resistant:

Anvil offers corrosion-resistant and weather-resistant Variable Spring Hangers to fill vital needs in the chemical and refinery industries as well as in modern outdoor power plant construction.

For protection against severe weather conditions or moderate corrosive conditions, the parts of the hanger are galvanized per

ASTM A-153, except the spring which has a protective coating and the load column for Type F which is electro-galvanized.

#### Advantages of a Protective Coating:

- · Protects from a wide range of corrosives.
- Does not affect the flex life of the spring.
- · Recommended for ambient temperatures up to 200° F

#### Travel stop:

The functional design of the pre-compressed variable spring hanger permits the incorporation of a two-piece travel stop that locks the hanger spring against upward or downward movement for temporary conditions of underload or overload. The complete travel stop, the up travel stop only for cold set purposes or the down travel stop only which may be employed during erection, hydrostatic test (Anvil permits a hydrostatic test load of 2 times the normal operating load for the spring hanger) or chemical

cleanout will be furnished only when specified. The travel stop is painted red and is installed at the factory with a caution tag attached calling attention that the device must be removed before the pipe line is put in service. Permanently attached travel stops available upon request.





Approvals: WW-H-171E (Types 51, 56 and 57) and MSS-SP-69 (Types 51, 52 and 53).

Specifications: Anvil Variable Spring Hangers are welded in strict accordance with ASME Section IX.

**Size Range:** The Anvil Variable Spring Hanger in five series and seven types is offered in twenty-three sizes (Fig. B-268 only is offered in twenty-five sizes). The hanger can be furnished to take loads 10 lbs. to 50,000 lbs. **Ordering:** 

- (1) Size
- (2) Type
- (3) Figure number
- (4) Product name
- (5) Desired supporting force in operating position
- (6) Calculated amount and direction of pipe movement from installed to operating position.
- (7) Customer's identification number (if any)
- (8) When ordering Type F spring specify if roller or guided, load column is to be furnished.
- (9) When ordering Type G, specify total load and load per spring plus center to center rod dimensions.
- (10) If required, specify with travel stop
- (11) When ordering corrosion resistant, specify C-268, C-82, C-98, Triple-CR, or Quadruple-CR " completely galvanized except coated spring coil".

Note: To help alleviate the problem of lifting large size spring hangers into position for installation, this product is available with lifting lugs (if required) on sizes weighing one hundred pounds or more.



#### **GUIDED CANTILEVER METHOD – KELLOGG**



#### $\delta = 48L^2S_A/E_aD$

Where:

- $\delta$  = maximum permissible displacement
- D = pipe outside diameter
- $E_a$  = elastic modulus of pipe material
- L = length of leg under consideration
- S_A = allowable stress range

#### **GUIDED CANTILEVER CHART – KELLOGG**



Assumed mode of deflection of guided cantilever.

L = Length of leg, ft.

 $\delta$  = Lateral deflection, in.

Value of E used =  $29 \times 10^6$  psi.

 $S_A = \text{Code allowable stress range psi.}$ 



Instructions: Determine value of  $L\sqrt{S_A}/10^3$ . Enter with this value of ordinate scale and read over to line for proper nominal pipe size. Read down to abscissa scale. The value obtained will be the permissible lateral deflection for leg.

#### **GUIDED CANTILEVER CORRECTION FACTORS – KELLOGG**

Multiply f times  $\delta$  to get the maximum permissible displacement for the geometry under consideration.

Correction Factor f, Guided Cantilever Method





Case II. For any interior leg L whose maximum deflection is in the plane of L and  $L_A$ where  $L_A$  is the shorter of the connecting legs.



#### THE PIPING FLEXIBILITY ANALYSIS PROCESS



Page 52 Rev. 3/10/06

#### **EXPANSION JOINT PRESSURE THRUST WORKSHOP**

What is the apparent change in the weight of the vessel caused by increasing the pressure by 100 psig (700 kPa)?



The pitch diameter of the bellows is 6.87 in. (175 mm).

#### TYPES OF EXAMINATION

<u>Visual examination</u> means using the unaided eye (except for corrective lenses) to inspect the exterior and readily accessible internal surface areas of piping assemblies or components. It does not include nor require remote examination such as by use of boroscopes. Visual examination is used to check materials and components for conformance to specifications and freedom from defects; fabrication including welds, assembly of threaded bolted and other joints; piping during erection; and piping after erection. Further, visual examination can be substituted for radiography, as described later, which is called in-process examination. Requirements for visual examination are provided in the ASME B&PV Code, Section V, Article 9. Records of visual examinations are not required other than those of in-process examination.

<u>Radiographic Examination</u> means using X ray or gamma ray radiation to produce a picture of the subject part, including subsurface features, on radiographic film for subsequent interpretation. It is a volumetric examination procedure that provides a means of detecting defects that are not observable on the surface of the material. Radiographic examination is used to inspect welds and, in some circumstances, castings. Requirements for radiographic examination of welds are provided in the ASME B&PV Code, Section V, Article 2.

<u>Ultrasonic Examination</u> means detecting subsurface defects using high-frequency sound impulses. The defects are detected by the reflection of sound waves from them. It is also a volumetric examination method that can be used to detect subsurface defects. It can be used as an alternative to radiography for weld examination. The requirements for ultrasonic examination of welds are provide in the ASME B&PV Code, Section V, Article 5, with an alternative for basic calibration blocks provided in para. 344.6.

<u>In-Process Examination</u> is a visual examination of the entire joining process, as described in para. 344.7. It is applicable to welding and brazing for metals, and bonding for non-metals. Since radiographic examination is not considered to provide useful results in brazing and bonding, in-process examination is used for these instead of radiography. For welding, it is permitted as a substitute for radiographic examination if specified in the engineering design or specifically authorized by the Inspector. This is not as effective a quality control procedure as random radiography and should only be considered for welds when special circumstances warrant.

Liquid Penetrant Examination means detecting surface defects by spreading a liquid dye penetrant on the surface, removing the dye after sufficient time has passed for the dye to penetrate into any surface discontinuity, and applying a thin coat of developer to the surface which draws the dye from defects. The defects are observable by the contrast between the color of the dye penetrant and the color of the developer. It is used to detect surface defects, and is used for examination of socket welds and branch connections in severe cyclic service than cannot be radiographed, and for all welds including structural attachment welds that are not radiographed when the alternative leak test (para. 345.9) is used. Further, liquid penetrant examination of metallic bellows is required by Appendix X, para. X302.2.2. The requirements for liquid penetrant examination of welds and components other than castings are provided in the ASME B&PV Code, Section V, Article 6.

<u>Magnetic Particle Examination</u> employs either electric coils wound around the part or prods to create a magnetic field. A magnetic powder is applied to the surface and defects are revealed by patterns the powder forms in response to the magnetic field disturbances caused by defects. This technique reveals surface and shallow subsurface defects. As such, it can provide more information than liquid penetrant examination. However, its use is limited to magnetic materials. It is an alternative to liquid penetrant examination wherever such an examination is required in ASME B31.3 (except in the case of metallic bellows). The requirements for magnetic particle examination of welds and components other than castings are provided in the ASME B&PV Code, Section V, Article 7.

<u>Hardness Testing</u> is required after heat treatment under some circumstances, as specified in Table 331.1.1. Hardness testing is not required for carbon steel (P-1), ferritic and austenitic stainless steel (P-7 & P-8), high nickel alloys (P-9A & P-9B), as well as some less commonly used alloys. For welds, the hardness check includes both the weld and the heat affected zone.

thods	-		Liquid Penetrant	>	:	:	:	:	:	:		:	:																																
on Me			Magnetic Particle	:	:	:	:	:	:	:	;		· :																																
minati			λιάσιορια				``		· 、	:	:	· 、	:																																
Exa			IsusiV	5	~	>	:	:	:	>	>	>	>																																
			Weld Imperfection	Crack	Lack of fusion	Incomplete penetration	Internal porosity	Internal siag inlcusion, tungsten inclusion, or elongated indication	Undercutting	Surface porosity or exposed slug inclusion [Note (6)]	Surface finish	Concave root surface (suck up)	Weld reinforcement or internal protrusion																																
					:	:	:	:	:	÷	:	:	:																																
	ervice	-	Branch Connection [Note (4)]	A	A	В	N/A	N/A	т	٩	N/A	$\succeq$	Z																																
[[]	D Fluid S	Type of Wel	e of Wel	e of Wel	e of Wel	e of Weld	e of Wel	Fillet [Note (3)]	A	N/A	N/A	N/A	N/A	I	A	N/A	N/A	Z																											
s [Note (	Category		Longitudinal Groove [Note (2)]	A	A	٩	N/A	N/A	A	٨	N/A	$\succeq$	۶																																
Condition				Girth and Miter Groove	A	ပ	U	N/A	N/A	1	٩	N/A	¥	ž																															
r Service	Severe Cyclic Conditions Type of Weld	f Weld	f Weld	f Weld		:	:	:	:	:	:	:	:	÷	:																														
ds and fo					f Weld	f Weld	f Weld	of Weld	of Weld	of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Type of Weld	Fillet [Note (3)]	A	A	N/A	N/A	N/A	A	٩
es of We		evere Cycl Type o	evere Cycl Type c		evere Cycli Type o	vere Cycli Type o	evere Cycli. Type of	evere Cyclie Type of	evere Cycli Type o	evere Cycli Type o																												Type o	Type o	Type of	Type of	Longitudinal Groove [Note (2)]	A	A	A
1) for Typ			Girth, Miter Groove & Branch Connection [Note (4)]	A	A	٩	D	ш	A	٩	7	×	۔																																
a (A to A Fluid				:	:	÷	÷	;	÷	÷	÷	į	:																																
Criteri tegory M	vice	f Weld	Fillet [Vote (3)]	A	٩	N/A	N/A	N/A	т	A	N/A	N/A	ب																																
al and Cat	Serv	Type of	Longitudinal Groove [Note (2)]	A	A	A	ш	IJ	A	A	N/A	¥	Ļ																																
Norma			Girth, Miter Groove & Branch Connection [Note (4)]	A	A	8	ш	IJ	н	A	N/A	$\mathbf{x}$	_																																

WELD ACCEPTANCE CRITERIA

Page 54 Rev. 3/10/06

BECHT ENGINEERING COMPANY, INC.