ASME B31.3 Process Piping

Charles Becht IV, PhD, PE
Don Frikken, PE
Instructors

Piping Development Process

1. Establish applicable system standard(s)
2. Establish design conditions
3. Make overall piping material decisions
 - Pressure Class
 - Reliability
 - Materials of construction
4. Fine tune piping material decisions
 - Materials
 - Determine wall thicknesses
 - Valves
5. Establish preliminary piping system layout & support configuration
6. Perform flexibility analysis
7. Finalize layout and bill of materials
8. Fabricate and install
9. Examine and test
17. High Pressure Piping

- General
- Materials
- Pressure Design
- Limitations
- Fabrication
- Examination
- Testing

The Material in This Section is Addressed by B31.3 in:

- Chapter IX - High Pressure Piping
- Appendix K - Allowable Stresses for High Pressure Piping
General

High Pressure: A service for which the owner specifies the use of Chapter IX [of B31.3] for piping design and construction… considered to be in excess of Class 2500 (6000 psi, 42 MPa).

There are no specified pressure limitations for application of these rules. [K300(a)]

General

- Most applications are in the range of 20,000 psi (150 MPa) and higher
- Nonmetallic piping is excluded
- No provisions are made for Category M fluid service
- The temperature is required to be below the creep range
- Allowances for variations in pressure and temperature are not permitted
Materials

- Allowable stress for materials other than bolting
 - $\frac{2}{3}$ of specified minimum yield strength (S_Y)
 - $\frac{2}{3}$ of yield strength at temperature; except for austenitic stainless steels and nickel alloys with similar behavior, 90% of yield strength at temperature

<table>
<thead>
<tr>
<th>Material</th>
<th>Base Code (ksi)</th>
<th>High Pressure (ksi)</th>
<th>Base Code (MPa)</th>
<th>High Pressure (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A106 Gr B</td>
<td>20.0</td>
<td>23.3</td>
<td>138</td>
<td>161</td>
</tr>
<tr>
<td>API 5L X80</td>
<td>30.0</td>
<td>53.3</td>
<td>207</td>
<td>368</td>
</tr>
</tbody>
</table>

Materials

- Castings and welded components are required to be such that the quality factors are equal to 1.0
- Conformance of materials to the product analysis chemical requirements of the applicable specification shall be verified.
- Cast irons are not permitted
- Zinc coated materials are not permitted, nor are zinc coated materials permitted to be welded to pressure containing components
Materials

Impact Test Requirements

- Impact testing is required for all materials from which a suitable test specimen can be machined.
- The impact test temperature shall be no higher than the lowest temperature at which the piping is subjected to a stress greater than 6 ksi (41 MPa)...lower if subsize specimens are required.
- Minimum acceptable impact values are higher than for the base code.

Pressure Design – Straight Pipe

\[t = \left(\frac{D}{2} \right) \left[1 - \exp\left(-1.155 \frac{P}{S} \right) \right] \]

Where:
- \(t \) = pressure design thickness
- \(D \) = outside diameter of pipe
- \(P \) = design pressure
- \(S \) = stress value for material from Appendix K (Autoclave Engineers)
Pressure Design – Straight Pipe

- The equation is based on through thickness yielding pressure as a basis for design
- The equation provides a factor of two on through thickness yielding

![Diagram]

Base Code, A106 Gr B
High Pressure, A106 Gr B
Base Code, API 5L X80
High Pressure, API 5L X80

(1 in. OD tubing)
Pressure Design – Straight Pipe

Pressure Design

Thread depth need not be subtracted from the pipe wall thickness when

- Thread depth does not exceed 20% of the wall thickness
- D/d is greater than 1.1
- The internally threaded attachment provides adequate reinforcement
- The thread undercut area does not extend beyond the reinforcement by a distance greater than the pipe wall thickness

(Autoclave Engineers)
Pressure Design [K304.7.2]

Components for which there are no specific rules require:

- Calculations consistent with the design philosophy of Chapter IX, and
- Substantiation of the calculations by
 - Extensive successful experience
 - Performance testing, or
 - Finite element stress analysis
- Interpolation between sizes & thicknesses allowed

Pressure Design

Fatigue Analysis

- Fatigue analysis in accordance with ASME B&PV Code, Section VIII, Div. 2 is required
- Pressure is the primary load, but alternating sustained loads and displacement loads must also be included
- High stresses at the inner surface of the pipe wall and stress concentrations must be considered
- An inelastic analysis is required if the stress on the inside surface of the pipe exceeds three times the allowable stress (twice yield)
Pressure Design

Fatigue Analysis

- Fatigue life may be demonstrated by destructive testing when the owner approves
- Fatigue life beyond that calculated via the Section VIII, Div. 2 method may be applied when
 - surface treatments or
 - prestressing methods
are used, and the component is qualified by
 - extensive successful service or
 - performance testing
in accordance with K304.7.2

Limitations

Not permitted

- Miter bends
- Fabricated branches
- Corrugated and creased bends
- Laps other than forged
- Slip-on flanges
Limitations

Joints Not permitted
- Ordinary threaded, except for instrumentation up to NPS ½
- Socket welding
- Expanded
- Solder
- Compression and flared tubing
- Caulked
- Bell type
- Adhesive

Fabrication

- Welder qualification is like for the base Code, except
 - Impact tests are required for all procedure and performance qualifications
 - More testing is required for weld procedure and performance qualifications
 - Performance and procedure qualification by others is not permitted
Fabrication

- Seal welds are not permitted
- Welded branch construction must provide for 100% interpretable radiographic examination

Examination Requirements - VT

<table>
<thead>
<tr>
<th>Metallic Piping</th>
<th>Normal</th>
<th>High Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials & components</td>
<td>Random to extent needed to satisfy the examiner</td>
<td>100%</td>
</tr>
<tr>
<td>Fabrication, including welds</td>
<td>5% Random</td>
<td>100%</td>
</tr>
<tr>
<td>Longitudinal welds</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Bolted, threaded & other joints</td>
<td>Random to extent needed…, except 100% for pneumatic test</td>
<td>100%, threads to be examined for finish and fit, and compliance with applicable standard</td>
</tr>
<tr>
<td>Supports, alignment, erected piping</td>
<td>Random</td>
<td>100%</td>
</tr>
</tbody>
</table>
Examination Requirements - Other

<table>
<thead>
<tr>
<th>Metallic Piping</th>
<th>Normal</th>
<th>High Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumferential groove welds</td>
<td>5% Random RT or UT</td>
<td>100% RT</td>
</tr>
<tr>
<td>Longitudinal welds</td>
<td>100% RT</td>
<td></td>
</tr>
<tr>
<td>Branch connection welds</td>
<td></td>
<td>100% RT</td>
</tr>
</tbody>
</table>

- Neither ultrasonic examination nor in-process examination may be substituted for radiographic examination.
- Acceptance criteria are more stringent than the base Code.

Testing

- A hydrostatic or a pneumatic test at 1.5 times the design pressure corrected for temperature is required.
- Protection of people and property from missile fragments, shock waves and other consequences of failure must be provided.
- A leak test of the installed piping at 1.1 times the design pressure is required unless the main leak test was done on the installed piping.
- For all welded systems, the closing weld may be tested at 1.1 times the design pressure.